skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Spatial Extent of Magnetopause Magnetic Reconnection From In Situ THEMIS Measurements
Abstract Magnetic reconnection at the magnetopause has long been studied with multi‐spacecraft observations. In this work, data from the five satellite THEMIS mission during the years of 2008–2010 are used to generate statistics regarding the spatial extent of magnetopause reconnection. The presence of a reconnecting magnetopause is determined with the Walén relation as two satellites cross the magnetopause simultaneously. In some cases both satellites measure reconnection whereas in others one satellite measures reconnection and the other does not. This study finds that two spacecraft are more likely to observe a contiguous reconnection region the closer they are spatially, and that reconnection is not always extended around the entire magnetopause. Plasmaβgradient drifts are investigated as a cause of local reconnection suppression. Spacecraft position along the magnetopause flanks is also investigated as a possible spatial limitation to reconnection due to changes in shear flow or boundary thickness.  more » « less
Award ID(s):
2025787
PAR ID:
10387347
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
12
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study presents observations of magnetopause reconnection and erosion at geosynchronous orbit, utilizing in situ satellite measurements and remote sensing ground‐based instruments. During the main phase of a geomagnetic storm, Geostationary Operational Environmental Satellites (GOES) 15 was on the dawnside of the dayside magnetopause (10.6 MLT) and observed significant magnetopause erosion, while GOES 13, observing duskside (14.6 MLT), remained within the magnetosphere. Combined observations from the THEMIS satellites and Super Dual Auroral Radar Network radars verified that magnetopause erosion was primarily caused by reconnection. While various factors may contribute to asymmetric erosion, the observations suggest that the weak reconnection rate on the duskside can play a role in the formation of asymmetric magnetopause shape. This discrepancy in reconnection rate is associated with the presence of cold dense plasma on the duskside of the magnetosphere, which limits the reconnection rate by mass loading, resulting in more efficient magnetopause erosion on the dawnside. 
    more » « less
  2. Abstract Magnetopause reconnection is the dominant mechanism for transporting solar wind energy and momentum into the magnetosphere‐ionosphere system. Magnetopause reconnection can occur along X‐lines of variable extent in the direction perpendicular to the reconnection plane. Identifying the spatial extent of X‐lines using satellite observations has critical limitations. However, we can infer the azimuthal extent of the X‐lines by probing the ionospheric signature of reconnection, the antisunward flow channels across the ionospheric Open‐Closed Field Line Boundary (OCB). We study 39 dayside magnetopause reconnection events using conjugate in situ and ionospheric observations to investigate the variability and controlling factors of the spatial extent of reconnection. We use spacecraft data from Time History of Events and Macroscale Interactions during Substorms (THEMIS) to identify in situ reconnection events. The width of the antisunward flow channels across the OCB is measured using the concurrent measurements from Super Dual Auroral Radar Network (SuperDARN). Also, the X‐line lengths are estimated by tracing the magnetic field lines from the ionospheric flow boundaries to the magnetopause. The solar wind driving conditions upstream of the bow shock are studied using solar wind monitors located at the L1 point. Results show that the magnetopause reconnection X‐lines can extend from a few Earth Radii (RE) to at least 22 RE in the GSM‐Y direction. Furthermore, the magnetopause reconnection tends to be spatially limited during high solar wind speed conditions. 
    more » « less
  3. Abstract During intense geomagnetic storms, the magnetopause can move in as far as geosynchronous orbit, leaving the satellites in that orbit out in the magnetosheath. Spacecraft operators turn to numerical models to predict the response of the magnetopause to solar wind conditions, but the predictions of the models are not always accurate. This study investigates four storms with a magnetopause crossing by at least one GOES satellite, using four magnetohydrodynamic models at NASA's Community Coordinated Modeling Center to simulate the events, and analyzes the results to investigate the reasons for errors in the predictions. Two main reasons can explain most of the erroneous predictions. First, the solar wind input to the simulations often contains features measured near the L1 point that did not eventually arrive at Earth; incorrect predictions during such periods are due to the solar wind input rather than to the models themselves. Second, while the models do well when the primary driver of magnetopause motion is a variation in the solar wind density, they tend to overpredict or underpredict the integrated Birkeland currents and their effects during times of strong negative interplanetary magnetic field (IMF)Bz, leading to poorer prediction capability. Coupling the MHD codes to a ring current model, when such a coupling is available, generally will improve the predictions but will not always entirely correct them. More work is needed to fully characterize the response of each code under strong southward IMF conditions as it relates to prediction of magnetopause location. 
    more » « less
  4. Abstract The role a geospace plume in influencing the efficiency of magnetopause reconnection is an open question with two contrasting theories being debated. A local‐control theory suggests that a plume decreases both local and global reconnection rates, whereas a global‐control theory argues that the global reconnection rate is controlled by the solar wind rather than local physics. Observationally, limited numbers of point measurements from spacecraft cannot reveal whether a local change affects the global reconnection. A distributed observatory is hence needed to assess the validity of the two theories. We use THEMIS and Los Alamos National Laboratory spacecraft to identify the occurrence of a geospace plume and its contact with the magnetopause. Global evolution and morphology of the plume is traced using GPS measurements. SuperDARN is then used to monitor the distribution and the strength of dayside reconnection. Two storm‐time geospace plume events are examined and show that as the plume contacts the magnetopause, the efficiency of reconnection decreases at the contact longitude. The amount of local decrease is 81% and 68% for the two events, and both values are consistent with the mass loading effect of the plume if the plume's atomic mass is ∼4 amu. Reconnection in the surrounding is enhanced, and when the solar wind driving is stable, little variation is seen in the cross polar cap potential. This study illuminates a pathway to resolve the role of cold dense plasma on solar wind‐magnetosphere coupling, and the observations suggest that plumes redistribute magnetopause reconnection activity without changing the global strength substantially. 
    more » « less
  5. Abstract We present observations that suggest the X-line of guide-field magnetic reconnection is not necessarily orthogonal to the plane in which magnetic reconnection is occurring. The plane of magnetic reconnection is often referred to as theL–Nplane, whereLis the direction of the reversing and reconnecting magnetic field andNis normal to the current sheet. The X-line is often assumed to be orthogonal to theL–Nplane (defined as theM-direction) in the majority of theoretical studies and numerical simulations. The four-satellite Magnetospheric Multiscale (MMS) mission, however, observes a guide-field magnetic reconnection event in Earth’s magnetotail in which the X-line may be oblique to theL–Nplane. This finding is somewhat opportune as two of the MMS satellites at the sameNlocation report nearly identical observations with no significant time delays in the electron diffusion region (EDR) even though they have substantial separation inL. A minimum directional derivative analysis suggests that the X-line is between 40° and 60° fromM, adding support that the X-line is oblique. Furthermore, the measured ion velocity is inconsistent with the apparent motion of the MMS spacecraft in theL-direction through the EDR, which can be resolved if one assumes a shear in theL–Nplane and motion in theM-direction. A nonorthogonal X-line, if somewhat common, would call for revisiting theory and simulations of guide-field magnetic reconnection, reexamination of how the reconnection electric field is supported in the EDR, and reconsidering the large-scale geometry of the X-line. 
    more » « less