skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Reconstructing midge consumer–resource dynamics using carbon stable isotope signatures of archived specimens
Abstract

Population cycles can be caused by consumer–resource interactions. Confirming the role of consumer–resource interactions, however, can be challenging due to an absence of data for the resource candidate. For example, interactions between midge larvae and benthic algae likely govern the high‐amplitude population fluctuations ofTanytarsus gracilentusin Lake Mývatn, Iceland, but there are no records of benthic resources concurrent with adult midge population counts. Here, we investigate consumer population dynamics using the carbon stable isotope signatures of archivedT. gracilentusspecimens collected from 1977 to 2015, under the assumption that midge δ13C values reflect those of resources they consumed as larvae. We used the time series for population abundance and δ13C to estimate interactions between midges and resources while accounting for measurement error and possible preservation effects on isotope values. Results were consistent with consumer–resource interactions: high δ13C values preceded peaks in the midge population, and δ13C values tended to decline after midges reached high abundance. One interpretation of this dynamic coupling is that midge isotope signatures reflect temporal variation in benthic algal δ13C values, which we expected to mirror primary production. Following from this explanation, high benthic production (enriched δ13C values) would contribute to increased midge abundance, and high midge abundance would result in declining benthic production (depleted δ13C values). An additional and related explanation is that midges deplete benthic algal abundance once they reach peak densities, causing midges to increase their relative reliance on other resources including detritus and associated microorganisms. Such a shift in resource use would be consistent with the subsequent decline in midge δ13C values. Our study adds evidence that midge–resource interactions driveT. gracilentusfluctuations and demonstrates a novel application of stable isotope time‐series data to understand consumer population dynamics.

 
more » « less
Award ID(s):
2134446
NSF-PAR ID:
10387360
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
104
Issue:
2
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many consumers depend on the contemporaneous growth of their food resources. For example,Tanytarsus gracilentusmidges feed on algae, and because midge generation time is much longer than that of algae, individual midges benefit not just from the standing stock but also from the growth of algae during their lifespans. This implies that an intermediate consumption rate maximizes midge somatic growth: low consumption rates constrain midge growth because they do not fully utilize the available food, whereas high consumption rates suppress algal biomass growth and consequently limit future food availability. An experiment manipulating midge presence and initial algal abundance showed that midges can suppress algal growth, as measured by changes in algal gross primary production (GPP). We also found a positive relationship between GPP and midge growth. A consumer–resource model fit to the experimental data showed a hump‐shaped relationship between midge consumption rates and their somatic growth. In the model, predicted midge somatic growth rates were only positively associated with GPP when their consumption rate was below the value that optimized midge growth. Therefore, midges did not overexploit algae in the experiment. This work highlights the balance that consumers which depend on contemporaneous resource growth might have to strike between short‐term growth and future food availability, and the benefits for consumers when they ‘manage' their resources well.

     
    more » « less
  2. Abstract

    While climate warming is widely predicted to reduce body size of ectotherms, evidence for this trend is mixed. Body size depends not only on temperature but also on other factors, such as food quality and intraspecific competition. Because temperature trends or other long‐term environmental factors may affect population size and food sources, attributing trends in average body size to temperature requires the separation of potentially confounding effects. We evaluated trends in the body size of the midgeTanytarsus gracilentusand potential drivers (water temperature, population size, and food quality) between 1977 and 2015 at Lake Mývatn, Iceland. Although temperatures increased at Mývatn over this period, there was only a slight (non‐significant) decrease in midge adult body size, contrary to theoretical expectations. Using a state‐space model including multiple predictors, body size was negatively associated with both water temperature and midge population abundance, and it was positively associated with13C enrichment of midges (an indicator of favorable food conditions). The magnitude of these effects were similar, such that simultaneous changes in temperature, abundance, and carbon stable isotopic signature could counteract each other in the long‐term body size trend. Our results illustrate how multiple factors, all of which could be influenced by global change, interact to affect average ectotherm body size.

     
    more » « less
  3. Abstract

    With increasing biodiversity loss occurring worldwide, there is a need to understand how these losses will affect ecosystem structure and function. Biodiversity loss leads to changes in species interactions and alters the trophic complexity of food webs. These alterations to trophic complexity can be described by changes to the diversity of food resources and the diversity of trophic levels. To understand how biodiversity affects trophic complexity of food webs, we used 10 islands across the Aleutian Archipelago to compare the alternate state communities found in kelp forest ecosystems (kelp forest and urchin barren communities) and then compared these to natural reference communities without local benthic production (their associated offshore communities). We constructed food webs for each community across the Aleutian Archipelago using primary producer and consumer carbon (δ13C, a proxy for food sources to a consumer) and nitrogen (δ15N, a proxy for consumer trophic level) stable isotope values. Our findings suggest that biodiversity loss (i.e., phase change from kelp forest to urchin barren) leads to reductions in trophic complexity, which was similar to naturally occurring communities with low local resource biodiversity. This was expressed by lower consumer isotopic dietary niche areas, especially omnivores and herbivores, and lower omnivore and carnivore trophic levels within the urchin barren communities. We clarify how biodiversity promotes food resources and increases trophic levels and complexity through critical trophic conduits.

     
    more » « less
  4. Abstract

    Intraspecific variation, including individual diet variation, can structure populations and communities, but the causes and consequences of individual foraging strategies are often unclear.

    Interactions between competition and resources are thought to dictate foraging strategies (e.g. specialization vs. generalization), but classical paradigms such as optimal foraging and niche theory offer contrasting predictions for individual consumers. Furthermore, both paradigms assume that individual foraging strategies maximize fitness, yet this prediction is rarely tested.

    We used repeated stable isotope measurements (δ13C, δ15N;N = 3,509) and 6 years of capture–mark–recapture data to quantify the relationship between environmental variation, individual foraging and consumer fitness among four species of desert rodents. We tested the relative effects of intraspecific competition, interspecific competition, resource abundance and resource diversity on the foraging strategies of 349 individual animals, and then quantified apparent survival as function of individual foraging strategies.

    Consistent with niche theory, individuals contracted their trophic niches and increased foraging specialization in response to both intraspecific and interspecific competition, but this effect was offset by resource availability and individuals generalized when plant biomass was high. Nevertheless, individual specialists obtained no apparent fitness benefit from trophic niche contractions as the most specialized individuals exhibited a 10% reduction in monthly survival compared to the most generalized individuals. Ultimately, this resulted in annual survival probabilities nearly 4× higher for generalists compared to specialists.

    These results indicate that competition is the proximate driver of individual foraging strategies, and that diet‐mediated fitness variation regulates population and community dynamics in stochastic resource environments. Furthermore, our findings show dietary generalism is a fitness maximizing strategy, suggesting that plastic foraging strategies may play a key role in species' ability to cope with environmental change.

     
    more » « less
  5. Abstract

    Ecosystem engineers have large impacts on the communities in which they live, and these impacts may feed back to populations of engineers themselves. In this study, we assessed the effect of ecosystem engineering on density‐dependent feedbacks for midges in Lake Mývatn, Iceland. The midge larvae reside in the sediment and build silk tubes that provide a substrate for algal growth, thereby elevating benthic primary production. Benthic algae are in turn the primary food source for the midge larvae, setting the stage for the effects of engineering to feed back to the midges themselves. Using a field mesocosm experiment manipulating larval midge densities, we found a generally positive but nonlinear relationship between density and benthic production. Furthermore, adult emergence increased with the primary production per midge larva. By combining these two relationships in a simple model, we found that the positive effect of midges on benthic production weakened negative density dependence at low to intermediate larval densities. However, this benefit disappeared at high densities when midge consumption of primary producers exceeded their positive effects on primary production through ecosystem engineering. Our results illustrate how ecosystem engineering can alter density‐dependent feedbacks for engineer populations.

     
    more » « less