skip to main content


Title: Stable isotope fingerprinting traces essential amino acid assimilation and multichannel feeding in a vertebrate consumer
Abstract

Animals often consume resources from multiple energy channels, thereby connecting food webs and driving trophic structure. Such ‘multichannel feeding’ can dictate ecosystem function and stability, but tools to quantify this process are lacking. Stable isotope ‘fingerprints’ are unique patterns in essential amino acid (EAA) δ13C values that vary consistently between energy channels like primary production and detritus, and they have emerged as a tool to trace energy flow in wild systems. Because animals cannot synthesize EAAs de novo and must acquire them from dietary proteins, ecologists often assume δ13C fingerprints travel through food webs unaltered. Numerous studies have used this approach to quantify energy flow and multichannel feeding in animals, but δ13C fingerprinting has never been experimentally tested in a vertebrate consumer.

We tested the efficacy of δ13C fingerprinting using captive deer micePeromyscus maniculatusraised on diets containing bacterial, fungal and plant protein, as well as a combination of all three sources. We measured the transfer of δ13C fingerprints from diet to consumer liver, muscle and bone collagen, and we used linear discriminant analysis (LDA) and isotopic mixing models to estimate dietary proportions compared to known contributions. Lastly, we tested the use of published δ13C source fingerprints previously used to estimate energy flow and multichannel feeding by consumers.

We found that EAA δ13C values exhibit significant isotopic (i.e. trophic) fractionation between consumer tissues and diets. Nevertheless, LDA revealed that δ13C fingerprints are consistently routed and assimilated into consumer tissues, regardless of isotopic incorporation rate. Isotopic mixing models accurately estimated the proportional diets of consumers, but all models overestimated plant‐based protein contributions, likely due to the digestive efficiencies of protein sources. Lastly, we found that δ13C source fingerprints from published literature can lead to erroneous diet reconstruction.

We show that δ13C fingerprints accurately measure energy flow to vertebrate consumers across tissues with different isotopic incorporation rates, thereby enabling the estimation of multichannel feeding at various temporal scales. Our findings illustrate the power of δ13C fingerprinting for quantifying food web dynamics, but also reveal that careful selection of dietary source data is critical to the accuracy of this emerging technique.

 
more » « less
Award ID(s):
2010712
NSF-PAR ID:
10446397
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Methods in Ecology and Evolution
Volume:
13
Issue:
8
ISSN:
2041-210X
Page Range / eLocation ID:
p. 1819-1830
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Winemiller, KO. (Ed.)
    The widespread importance of variable types of primary production, or energy channels, to consumer communities has become increasingly apparent. However, the mechanisms underlying this “multichannel” feeding remain poorly understood, especially for aquatic ecosystems that pose unique logistical constraints given the diversity of potential energy channels. Here, we use bulk tissue isotopic analysis along with carbon isotope (δ13C) analysis of individual amino acids to characterize the relative contribution of pelagic and benthic energy sources to a kelp forest consumer community in northern Chile. We measured bulk tissue δ13C and δ15N for >120 samples; of these we analyzed δ13C values of six essential amino acids (EAA) from nine primary producer groups (n = 41) and 11 representative nearshore consumer taxa (n = 56). Using EAA δ13C data, we employed linear discriminant analysis (LDA) to assess how distinct EAA δ13C values were between local pelagic (phytoplankton/particulate organic matter), and benthic (kelps, red algae, and green algae) endmembers. With this model, we were able to correctly classify nearly 90% of producer samples to their original groupings, a significant improvement on traditional bulk isotopic analysis. With this EAA isotopic library, we then generated probability distributions for the most important sources of production for each individual consumer and species using a bootstrap‐resampling LDA approach. We found evidence for multichannel feeding within the community at the species level. Invertebrates tended to focus on either pelagic or benthic energy, deriving 13–67% of their EAA from pelagic sources. In contrast, mobile (fish) taxa at higher trophic levels used more equal proportions of each channel, ranging from 19% to 47% pelagically derived energy. Within a taxon, multichannel feeding was a result of specialization among individuals in energy channel usage, with 37 of 56 individual consumers estimated to derive >80% of their EAA from a single channel. Our study reveals how a cutting‐edge isotopic technique can characterize the dynamics of energy flow in coastal food webs, a topic that has historically been difficult to address. More broadly, our work provides a mechanism as to how multichannel feeding may occur in nearshore communities, and we suggest this pattern be investigated in additional ecosystems. 
    more » « less
  2. Abstract

    Food web ecology has revolutionized our understanding of ecological processes, but the drivers of food web properties like trophic position (TP) and food chain length are notoriously enigmatic. In terrestrial ecosystems, above‐ and belowground systems were historically compartmentalized into “green” and “brown” food webs, but the coupling of these systems by animal consumers is increasingly recognized, with potential consequences for trophic structure. We used stable isotope analysis (δ13C, δ15N) of individual amino acids to trace the flow of essential biomolecules and jointly measure multichannel feeding, food web coupling, and TP in a guild of small mammals. We then tested the hypothesis that brown energy fluxes to aboveground consumers increase terrestrial food chain length via cryptic trophic transfers during microbial decomposition. We found that the average small mammal consumer acquired nearly 70% of their essential amino acids (69.0% ± 7.6%) from brown food webs, leading to significant increases in TP across species and functional groups. Fungi were the primary conduit of brown energy to aboveground consumers, providing nearly half the amino acid budget for small mammals on average (44.3% ± 12.0%). These findings illustrate the tightly coupled nature of green and brown food webs and show that microbially mediated energy flow ultimately regulates food web structure in aboveground consumers. Consequently, we propose that the integration of green and brown energy channels is a cryptic driver of food chain length in terrestrial ecosystems.

     
    more » « less
  3. Abstract

    Eukaryotic microalgae play critical roles in the structure and function of marine food webs. The contribution of microalgae to food webs can be tracked using compound‐specific isotope analysis of amino acids (CSIA‐AA). Previous CSIA‐AA studies have defined eukaryotic microalgae as a single functional group in food web mixing models, despite their vast taxonomic and ecological diversity. Using controlled cultures, this work characterizes the amino acidδ13C (δ13CAA) fingerprints—a multivariate metric of amino acid carbon isotope values—of four major groups of eukaryotic microalgae: diatoms, dinoflagellates, raphidophytes, and prasinophytes. We found excellent separation of essential amino acidδ13C (δ13CEAA) fingerprints among four microalgal groups (mean posterior probability reclassification of 99.2 ± 2.9%). We also quantified temperature effects, a primary driver of microalgal bulk carbon isotope variability, on the fidelity ofδ13CAAfingerprints. A 10°C range in temperature conditions did not have significant impacts on variance inδ13CAAvalues or the diagnostic microalgalδ13CEAAfingerprints. Theseδ13CEAAfingerprints were used to identify primary producers at the base of food webs supporting consumers in two contrasting systems: (1) penguins feeding in a diatom‐based food web and (2) mixotrophic corals receiving amino acids directly from autotrophic endosymbiotic dinoflagellates and indirectly from water column diatoms, prasinophytes, and cyanobacteria, likely via heterotrophic feeding on zooplankton. The increased taxonomic specificity of CSIA‐AA fingerprints developed here will greatly improve future efforts to reconstruct the contribution of diverse eukaryotic microalgae to the sources and cycling of organic matter in food web dynamics and biogeochemical cycling studies.

     
    more » « less
  4. Abstract

    Tracing the flow of dietary energy sources, especially in systems with a high degree of omnivory, is an ongoing challenge in ecology. In aquatic systems, one of the persistent challenges is in differentiating between autochthonous and allochthonous energy sources to top consumers. Bulk carbon stable isotope values of aquatic and terrestrial prey often overlap, making it difficult to delineate dietary energy pathways in food webs with high allochthonous prey subsidies, such as in many northern temperate waterbodies. We conducted a feeding experiment to explore how fatty acid stable isotopes may overcome the challenge of partitioning autochthonous and allochthonous energy pathways in aquatic consumers. We fed hatchery‐reared Arctic Char (Salvelinus alpinus) diets of either benthic invertebrates, terrestrial earthworms, or a mixture of both. We then compared how the stable carbon isotopes of fatty acids (δ13CFA) distinguished between diet items and respective treatments inS. alpinusliver and muscle tissues, relative to bulk stable isotopes and fatty acid profiles. Although a high degree of variability of fatty acid stable carbon isotope values was present in all three measures, our results suggest that the ability of this method to overcome the challenges of bulk stable isotopes may be overstated. Finally, our study highlights the importance of further experimental investigation, and consideration of physiological and biochemical processes when employing this emerging method.

     
    more » « less
  5. Abstract

    Niche conservatism—the retention of ecological traits across space and time—is an emerging topic of interest because it can predict responses to global change. The conservation of Grinnellian niche characteristics, like species‐habitat associations, has received widespread attention, but the conservation of Eltonian traits such as consumer–resource interactions remains poorly understood.

    The inability to quantify Eltonian niches through space and time has historically limited the assessment of Eltonian niche conservatism and the dynamics of foraging across populations. Consequently, the relative influence of endogenous factors like phylogeny versus exogenous features like environmental context has rarely been addressed.

    We tested Eltonian niche conservatism using a paired design to compare foraging among four populations of American martensMartes americanaand Pacific martensMartes caurina, morphologically and ecologically similar sister taxa that are allopatrically distributed throughout western North America. We developed a three‐stage isotopic framework and then quantified dietary niche overlap between the sister species and paired island‐mainland sites to assess the relative influence of endogenous (i.e., species) versus exogenous (i.e., environment) factors on Eltonian niches. First, we calculated pairwise dietary overlap in scaled δ‐space using standard ellipses. We then estimated proportional diets (“p‐space”) for individuals using isotopic mixing models and developed a novel utilization distribution overlap approach to quantify proportional dietary overlap. Lastly, we estimated population‐level proportional diets and quantified the differential use of functional prey groups across sites.

    We detected no pairwise overlap of dietary niches in δ‐space, and distributions of individual diets in p‐space revealed little overlap in core diets across populations. All pairwise comparisons of individuals revealed significant differences in diet, and population‐level comparisons detected contrasting use of functional prey groups.

    We developed a multi‐faceted isotopic framework to quantify Eltonian niches and found limited evidence of Eltonian niche conservatism across carnivore populations. Our findings are consistent with the growing recognition of dietary plasticity in consumers and suggest that consumer–resource dynamics are largely driven by exogenous environmental factors like land cover and community composition. These results illustrate the context‐dependent nature of foraging and indicate consumer functionality can be dynamic.

    Aplain language summaryis available for this article.

     
    more » « less