skip to main content


Title: A database of Holocene nearshore marine mollusc shell geochemistry from the Northeast Pacific
We compiled a database of previously published oxygen and carbon isotope data from archaeological, archival, and modern marine molluscs from the North American coast of the Northeast Pacific (32oN to 50oN). This database includes oxygen and carbon isotope data from over 550 modern, archaeological, and sub-fossil shells from 8880 years before present (BP) to the present, from which there are 4,845 total δ¹³C and 5,071 total δ¹⁸O measurements. Database includes the following parameters: paper of original publication, publication year, unique shell identification, unique subsample identification, sample number (given by original authors), subsample number (given by original author), number of subsamples per shell (added here), age in years before present, species, source (midden or modern), latitude, longitude, calculated sea surface temperature (only if published by original authors), tidal height, life mode, habitat, archaeological trinomial (when applicable), oxygen isotope value, and carbon isotope value. Shell dating and sampling strategies vary among studies (1-118 samples per shell) and vary significantly by journal discipline. Data are from various bivalves and gastropod species, with Mytilus spp. being the most commonly analyzed taxon. This novel database can be used to investigate changes in nearshore sea surface conditions including warm-cool oscillations, heat waves, and upwelling intensity, and provides nearshore calcite δ¹³C and δ¹⁸O values that can be compared to the vast collections of offshore foraminifera calcite δ¹³C and δ¹⁸O data from marine sediment cores. By utilizing previously published geochemical data from midden and museum shells rather than sampling new specimens, future scientific research can reduce or omit the alteration or destruction of culturally valued specimens and sites.  more » « less
Award ID(s):
1740214
NSF-PAR ID:
10387435
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
PANGAEA - Data Publisher for Earth & Environmental Science
Date Published:
Subject(s) / Keyword(s):
["geochemical archives","Mollusc","Nearshore zone","oxygen and carbon isotopes","paleoceanography","Binary Object","Binary Object (Media Type)","Binary Object (File Size)","File content"]
Format(s):
Medium: X Size: 4 data points Other: text/tab-separated-values
Size(s):
["4 data points"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The shells of marine invertebrates can serve as high-resolution records ofoceanographic and atmospheric change through time. In particular, oxygen andcarbon isotope analyses of nearshore marine calcifiers that grow byaccretion over their lifespans provide seasonal records of environmental andoceanographic conditions. Archaeological shell middens generated byIndigenous communities along the northwest coast of North America containshells harvested over multiple seasons for millennia. These shell middens,as well as analyses of archival and modern shells, have the potential toprovide multi-site, seasonal archives of nearshore conditions throughout theHolocene. A significant volume of oxygen and carbon isotope data fromarchaeological shells exist, yet they are separately published in archaeological,geochemical, and paleoceanographic journals and have not been comprehensivelyanalyzed to examine oceanographic change over time. Here, we compiled adatabase of previously published oxygen and carbon isotope data fromarchaeological, archival, and modern marine mollusks from the CaliforniaCurrent System (North American coast of the northeast Pacific, 32 to55∘ N). This database includes oxygen and carbon isotope data from 598modern, archaeological, and sub-fossil shells from 8880 years before present(BP) to the present, from which there are 4917 total δ13C and7366 total δ18O measurements. Shell dating and samplingstrategies vary among studies (1–345 samples per shell, mean 44.7 samplesper shell) and vary significantly by journal discipline. Data are fromvarious bivalves and gastropod species, with Mytilus spp. being the most commonlyanalyzed taxon. This novel database can be used to investigate changes innearshore sea surface conditions including warm–cool oscillations, heatwaves, and upwelling intensity, and it provides nearshore calcium carbonateδ13C and δ18O values that can be compared to thevast collections of offshore foraminiferal calcium carbonate δ13C and δ18O data from marine sediment cores. Byutilizing previously published geochemical data from midden and museumshells rather than sampling new specimens, future scientific research canreduce or omit the alteration or destruction of culturally valued specimensand sites. The dataset is publicly available through PANGAEA athttps://doi.org/10.1594/PANGAEA.941373 (Palmer et al.,2021). 
    more » « less
  2. Stable isotope proxies measured in the proteinaceous fraction of archaeological mollusc shell represents an increasingly important archive for reconstructing past ecological and biogeochemical conditions of nearshore environments. A major issue, however, is understanding the impact of diagenetic alteration in sub-fossil shell isotope values. “Bulk” stable isotope values of nitrogen (δ15N), and especially carbon (δ13C) often shift strongly with increasing C/N ratios in degraded shell, resulting in unreliable data. Here, we examine preservation of an entirely new set of shell paleo-proxies, compound-specific isotopes of amino acids (CSI-AA). We examine carbon (δ13CAA) and nitrogen (δ15NAA) patterns and values from the organic fraction of California mussel (Mytilus californianus) shells from the California Channel Islands. Archaeological shell samples ranging in age from ca. 6,100 to 250 cal BP exhibiting a wide range of degradation states were collected from varied depositional environments (e.g., exposed coastal bluff, buried strata, etc.), and were directly compared to modern shells of the same species and region. Our results indicate organic matter C/N ratios as the best bulk diagnostic indicator of the relative degradation state of shell organic fraction, including changes at the molecular level. Modern shell organic C/N ratios ranged from 2.8 to 3.5, while those in archaeological shell were substantially elevated (3.4–9.5), exhibiting strong and significant negative correlations with bulk δ13C values, weight %C, and weight %N, and a significant but weaker correlation with δ15 N values. An additional “cleaning” step using weak NaOH helped to remove possible exogenous contaminants and improved bulk values of some samples. However, relative molar AA abundances revealed that some AAs, especially the two most abundant, Glycine and Alanine, progressively decreased with increasing C/N ratio. The loss of these amino acids permanently alters bulk isotope values regardless of removal of contaminants. Modeling the bulk isotope change expected due to amino acid molar composition showed major and predictable shifts in bulk δ13C values from selected AA loss, and similarly large but far more variable impacts from exogenous contaminants. In contrast to bulk data, key CSI-AA values and patterns remained almost entirely unaltered, even in the most degraded shell samples, closely matching expected biosynthetic isotope patterns in modern mussel shell. AA isotope proxies for “baseline” (δ15N-Phenylalanine and average δ13C-Essential AAs) and planktonic trophic structure (δ15N-Glutamic Acid and δ15N-Phenylalanine) were not statistically altered with degradation in any sample. Overall, we conclude that while bulk isotopes, particularly δ13C, are very likely to be unreliable in archaeological or subfossil shell with C/N ratios higher than ∼4.0, CSI-AA proxies can still be used to reconstruct past climatic and ecological conditions of the nearshore marine environment. 
    more » « less
  3. Abstract Ammonites have disparate adult morphologies indicative of diverse ecological niches, but ammonite hatchlings are small (~1 mm diameter), which raises questions about the similarity of egg incubation and hatchling life mode in ammonites. Modern Nautilus is sometimes used as a model organism for understanding ammonites, but despite their outward similarities, the groups are only distantly related. Trends in ammonite diversity and extinction vulnerability in the fossil record contrast starkly with those of nautilids, and embryonic shells from Late Cretaceous ammonites are two orders of magnitude smaller than nautilid embryonic shells. To investigate possible environmental changes experienced by ammonite hatchlings, we used secondary ion mass spectrometry to analyze the oxygen and carbon isotope composition of the embryonic shells and early postembryonic whorls of five juveniles of Hoploscaphites comprimus obtained from a single concretion in the Fox Hills Formation of South Dakota. Co-occurring bivalves and diagenetic calcite were also analyzed to provide a benthic baseline for comparison. The oxygen isotope ratios of embryonic shells are more like those of benthic bivalves, suggesting that ammonite eggs were laid on the bottom. Ammonite shell immediately after hatching has more negative δ 18 O, suggesting movement to more shallow water that is potentially warmer and/or fresher. After approximately one whorl of postembryonic growth, the values of δ 18 O become more positive in three of the five individuals, suggesting that these animals transitioned to a more demersal mode of life. Two other individuals transition to even lower δ 18 O values that could suggest movement to nearshore brackish water. These data suggest that ammonites, like many modern coleoids, may have spawned at different times of the year. Because scaphites were one of the short-term Cretaceous–Paleogene extinction survivors, it is possible that this characteristic allowed them to develop a broader geographic range and, consequently, a greater resistance to extinction. 
    more » « less
  4. Abstract Rationale

    The use of secondary ion mass spectrometry (SIMS) to perform micrometer‐scalein situcarbon isotope (δ13C) analyses of shells of marine microfossils called planktic foraminifers holds promise to explore calcification and ecological processes. The potential of this technique, however, cannot be realized without comparison to traditional whole‐shell δ13C values measured by gas source mass spectrometry (GSMS).

    Methods

    Paired SIMS and GSMS δ13C values measured from final chamber fragments of the same shell of the planktic foraminiferOrbulina universaare compared. The SIMS–GSMS δ13C differences (Δ13CSIMS‐GSMS) were determined via paired analysis of hydrogen peroxide‐cleaned fragments of modern cultured specimens and of fossil specimens from deep‐sea sediments that were either untreated, sonicated, and cleaned with hydrogen peroxide or vacuum roasted. After treatment, fragments were analyzed by a CAMECA IMS 1280 SIMS instrument and either a ThermoScientific MAT‐253 or a Fisons Optima isotope ratio mass spectrometer (GSMS).

    Results

    Paired analyses of cleaned fragments of cultured specimens (n = 7) yield no SIMS–GSMS δ13C difference. However, paired analyses of untreated (n = 18) and cleaned (n = 12) fragments of fossil shells yield average Δ13CSIMS‐GSMSvalues of 0.8‰ and 0.6‰ (±0.2‰, 2 SE), respectively, while vacuum roasting of fossil shell fragments (n = 11) removes the SIMS–GSMS δ13C difference.

    Conclusions

    The noted Δ13CSIMS‐GSMSvalues are most likely due to matrix effects causing sample–standard mismatch for SIMS analyses but may also be a combination of other factors such as SIMS measurement of chemically bound water. The volume of material analyzed via SIMS is ~105times smaller than that analyzed by GSMS; hence, the extent to which these Δ13CSIMS‐GSMSvalues represent differences in analyte or instrument factors remains unclear.

     
    more » « less
  5. Abstract

    A controversial aspect of Pliocene (5.3–2.6 Ma) climate is whether El Niño‐like (El Padre) conditions, characterized by a reduced trans‐equatorial sea‐surface temperature (SST) gradient, prevailed across the Pacific. Evidence for El Padre is chiefly based on reconstructions of sea‐surface conditions derived from the oxygen isotope (δ18O) and Mg/Ca compositions of shells belonging to the planktic foraminiferTrilobatus sacculifer. However, fossil shells of this species are a mixture of multiple carbonate phases—pre‐gametogenic, gametogenic (reproductive), and diagenetic calcites—that formed under different physiological and/or environmental conditions and are averaged in conventional whole‐shell analyses. Through in situ measurements of micrometer‐scale domains within Pliocene‐aged shells ofT. sacculiferfrom Ocean Drilling Program Site 806 in the western equatorial Pacific, we show that the δ18O of gametogenic calcite is 0.6–0.8‰ higher than pre‐gametogenic calcite, while the Mg/Ca ratios of these two phases are the same. Both the whole‐shell and pre‐gametogenic Mg/Ca records indicate that average early Pliocene SSTs were ~1°C warmer than modern, with present‐day SSTs being established during the latest Pliocene and early Pleistocene (~3.0–2.0 Ma). The measurement of multiple calcite phases by whole‐shell δ18O analyses masks a late Pliocene to earliest Pleistocene (3.6–2.2 Ma) decrease in seawater δ18O (δ18Osw) values reconstructed from in situ pre‐gametogenic δ18O and Mg/Ca measurements. Our novel δ18Oswrecord indicates that sea‐surface salinities in the west Pacific warm pool were higher than modern prior to ~3.5 Ma, which is consistent with more arid conditions under an El Padre state.

     
    more » « less