skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metabolic link between auxin production and specialized metabolites in Sorghum bicolor
Abstract Aldoximes are amino acid derivatives that serve as intermediates for numerous specialized metabolites including cyanogenic glycosides, glucosinolates, and auxins. Aldoxime formation is mainly catalyzed by cytochrome P450 monooxygenases of the 79 family (CYP79s) that can have broad or narrow substrate specificity. Except for SbCYP79A1, aldoxime biosynthetic enzymes in the cereal sorghum (Sorghum bicolor) have not been characterized. This study identified nine CYP79-encoding genes in the genome of sorghum. A phylogenetic analysis of CYP79 showed that SbCYP79A61 formed a subclade with maize ZmCYP79A61, previously characterized to be involved in aldoxime biosynthesis. Functional characterization of this sorghum enzyme using transient expression in Nicotiana benthamiana and stable overexpression in Arabidopsis thaliana revealed that SbCYP79A61 catalyzes the production of phenylacetaldoxime (PAOx) from phenylalanine but, unlike the maize enzyme, displays no detectable activity against tryptophan. Additionally, targeted metabolite analysis after stable isotope feeding assays revealed that PAOx can serve as a precursor of phenylacetic acid (PAA) in sorghum and identified benzyl cyanide as an intermediate of PAOx-derived PAA biosynthesis in both sorghum and maize. Taken together, our results demonstrate that SbCYP79A61 produces PAOx in sorghum and may serve in the biosynthesis of other nitrogen-containing phenylalanine-derived metabolites involved in mediating biotic and abiotic stresses.  more » « less
Award ID(s):
2142898
PAR ID:
10387452
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Experimental Botany
Volume:
74
Issue:
1
ISSN:
0022-0957
Format(s):
Medium: X Size: p. 364-376
Size(s):
p. 364-376
Sponsoring Org:
National Science Foundation
More Like this
  1. Auxins are a class of plant hormones playing crucial roles in a plant’s growth, development, and stress responses. Phenylacetic acid (PAA) is a phenylalanine-derived natural auxin found widely in plants. Although the auxin activity of PAA in plants was identified several decades ago, PAA homeostasis and its function remain poorly understood, whereas indole-3-acetic acid (IAA), the most potent auxin, has been used for most auxin studies. Recent studies have revealed unique features of PAA distinctive from IAA, and the enzymes and intermediates of the PAA biosynthesis pathway have been identified. Here, we summarize the occurrence and function of PAA in plants and highlight the recent progress made in PAA homeostasis, emphasizing PAA biosynthesis and crosstalk between IAA and PAA homeostasis. 
    more » « less
  2. Abstract In plants, embryo size is determined via interactions between metabolic and developmental signals. Maize (Zea mays) big embryo 6 (bige6) enhances embryo size while sharply reducing plant growth. Here, we show that BigE6 encodes a plastidial prephenate aminotransferase (PPA-AT), a key enzyme in the arogenate pathway for L-phenylalanine (Phe) and L-tyrosine (Tyr) biosynthesis. The maize BigE6 paralog, BigE6Like, encodes a cytosol-localized PPA-AT, revealing Phe and Tyr biosynthesis via cytosolic arogenate as a potential alternative to the known cytosolic phenylpyruvate pathway. Moreover, the single PPA-AT gene of Arabidopsis (Arabidopsis thaliana) encodes plastidial and cytosolic enzymes by alternative splicing. Transgenic rescue of a ppa-at mutant in Arabidopsis demonstrates that the plastidial PPA-AT is indispensable for seed formation due, in part, to its essential role in the female gametophyte. Leaves of bige6 maize maintained overall homeostasis for aromatic amino acids and downstream metabolites, revealing a resilience of mechanisms that scale growth to a limiting supply of Phe and Tyr. In bige6 seeds, broad perturbation of amino acid homeostasis is associated with transcriptomic upregulation of growth processes in the embryo and endosperm, implicating amino acid signaling in the regulation of embryo size. Our findings reveal the complexity and developmental dependence of growth responses to limiting amino acid biosynthesis. 
    more » « less
  3. Abstract Fungal infection of grasses, including rice (Oryza sativa), sorghum (Sorghum bicolor), and barley (Hordeum vulgare), induces the formation and accumulation of flavonoid phytoalexins. In maize (Zea mays), however, investigators have emphasized benzoxazinoid and terpenoid phytoalexins, and comparatively little is known about flavonoid induction in response to pathogens. Here, we examined fungus-elicited flavonoid metabolism in maize and identified key biosynthetic enzymes involved in the formation of O-methylflavonoids. The predominant end products were identified as two tautomers of a 2-hydroxynaringenin-derived compound termed xilonenin, which significantly inhibited the growth of two maize pathogens, Fusarium graminearum and Fusarium verticillioides. Among the biosynthetic enzymes identified were two O-methyltransferases (OMTs), flavonoid OMT 2 (FOMT2), and FOMT4, which demonstrated distinct regiospecificity on a broad spectrum of flavonoid classes. In addition, a cytochrome P450 monooxygenase (CYP) in the CYP93G subfamily was found to serve as a flavanone 2-hydroxylase providing the substrate for FOMT2-catalyzed formation of xilonenin. In summary, maize produces a diverse blend of O-methylflavonoids with antifungal activity upon attack by a broad range of fungi. 
    more » « less
  4. Abstract Vascular plants direct large amounts of carbon to produce the aromatic amino acid phenylalanine to support the production of lignin and other phenylpropanoids. Uniquely, grasses, which include many major crops, can synthesize lignin and phenylpropanoids from both phenylalanine and tyrosine. However, how grasses regulate aromatic amino acid biosynthesis to feed this dual lignin pathway is unknown. Here we show, by stable-isotope labeling, that grasses produce tyrosine >10-times faster than Arabidopsis without compromising phenylalanine biosynthesis. Detailed in vitro enzyme characterization and combinatorialin plantaexpression uncovered that coordinated expression of specific enzyme isoforms at the entry and exit steps of the aromatic amino acid pathway enables grasses to maintain high production of both tyrosine and phenylalanine, the precursors of the dual lignin pathway. These findings highlight the complex regulation of plant aromatic amino acid biosynthesis and provide novel genetic tools to engineer the interface of primary and specialized metabolism in plants. 
    more » « less
  5. SUMMARY Plants synthesize an array of volatile compounds, many of which serve ecological roles in attracting pollinators, deterring herbivores, and communicating with their surroundings. Methyl anthranilate (MeAA) is an anti‐herbivory defensive volatile responsible for grape aroma that is emitted by several agriculturally relevant plants, including citrus, grapes, and maize. Unlike maize, which uses a one‐step anthranilate methyltransferase (AAMT), grapes have been thought to use a two‐step pathway for MeAA biosynthesis. By mining available transcriptomics data, we identified two AAMTs inVitis vinifera(wine grape), as well as one ortholog in “Concord” grape. Many angiosperms methylate the plant hormone salicylic acid (SA) to produce methyl salicylate, which acts as a plant‐to‐plant communication molecule. Because theCitrus sinensis(sweet orange) SA methyltransferase can methylate both anthranilate (AA) and SA, we used this enzyme to examine the molecular basis of AA activity by introducing rational mutations, which identified several active site residues that increase activity with AA. Reversing this approach, we introduced mutations that imparted activity with SA in the maize AAMT, which uncovered different active site residues from those in the citrus enzyme. Sequence and phylogenetic analysis revealed that one of theVitisAAMTs shares an ancestor with jasmonic acid methyltransferases, similar to the AAMT from strawberry (Frageriasp.). Collectively, these data demonstrate the molecular mechanisms underpinning AA activity across methyltransferases and identify one‐step enzymes by which grapes synthesize MeAA. 
    more » « less