skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cophylogenetic Methods to Untangle the Evolutionary History of Ecological Interactions
Myriad branches in the tree of life are intertwined through ecological relationships. Biologists have long hypothesized that intimate symbioses between lineages can influence diversification patterns to the extent that it leaves a topological imprint on the phylogenetic trees of interacting clades. Over the past few decades, cophylogenetic methods development has provided a toolkit for identifying such histories of codiversification, yet it is often difficult to determine which tools best suit the task at hand. In this review, we organize currently available cophylogenetic methods into three categories—pattern-based statistics, event-scoring methods, and more recently developed generative model–based methods—and discuss their assumptions and appropriateness for different types of cophylogenetic questions. We classify cophylogenetic systems based on their biological properties to provide a framework for empiricists investigating the macroevolution of symbioses. In addition, we provide recommendations for the next generation of cophylogenetic models that we hope will facilitate further methods development.  more » « less
Award ID(s):
2040347 1759909 1556853
PAR ID:
10387560
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annual Review of Ecology, Evolution, and Systematics
Volume:
53
Issue:
1
ISSN:
1543-592X
Page Range / eLocation ID:
275 to 298
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Just as a phylogeny encodes the evolutionary relationships among a group of organisms, a cophylogeny represents the coevolutionary relationships among symbiotic partners. Both are primarily reconstructed using computational analysis of biomolecular sequence data. The most widely used cophylogenetic reconstruction methods utilize an important simplifying assumption: species phylogenies for each set of coevolved taxa are required as input and assumed to be correct. Many studies have shown that this assumption is rarely – if ever – satisfied, and the consequences for cophylogenetic studies are poorly understood. To address this gap, we conduct a comprehensive performance study that quantifies the relationship between species tree estimation error and downstream cophylogenetic estimation accuracy. We study the performance of state-of-the-art methods for cophylogenetic reconstruction using in silico model-based simulations. Our investigation also assessed cophylogenetic reproducibility using genomic sequence data from two important models of symbiosis: soil-associated fungi and their endosymbiotic bacteria, and bobtail squid and their bioluminescent bacterial symbionts. Our findings conclusively demonstrate the major impact that upstream phylogenetic estimation error has on downstream cophylogenetic reconstruction. Relative to other experimental factors such as cophylogenetic estimation method choice and coevolutionary event costs, phylogenetic estimation error ranked highest in importance based on a random forest-based variable importance assessment. We conclude with practical guidance and future research directions. Among the many considerations needed for accurate cophylogenetic reconstruction – choice of computational method, method settings, sampling design, and others – just as much attention must be paid to careful species phylogeny estimation using modern best practices. 
    more » « less
  2. Abstract Recently, genomic approaches have helped to resolve phylogenetic questions in many groups of parasitic organisms, including lice (Phthiraptera). However, these approaches have still not been applied to one of the most diverse groups of lice, Amblycera. To fill this gap, we applied phylogenomic methods based on genome‐level exon sequence data to resolve the relationships within and among the families of Amblycera. Our phylogenomic trees support the monophyly of the families Ricinidae and Laemobothriidae. However, the families Trimenoponidae and Gyropidae are not monophyletic, indicating that they should be merged into a single family. The placement ofTrinotonis unstable with respect to Boopiidae and Menoponidae, and we suggest recognizing Trinotonidae as a separate family. At the genus level, the generaColpocephalum,Hohorstiella,MenacanthusandRicinuswere recovered as paraphyletic. Regarding generic complexes, the tree revealed theMenacanthuscomplex to be monophyletic, but theColpocephalumcomplex paraphyletic, including genera not traditionally placed in this group. Dating analysis suggests that the divergence among families of Amblycera occurred shortly after the Cretaceous–Paleogene boundary 66 Mya. Cophylogenetic analyses revealed many host‐switching events during the diversification of Amblycera, indicating that the evolutionary history of Amblycera does not tightly mirror that of its hosts. Ancestral host reconstructions revealed that the ancestral host of Amblycera was most likely a bird, with two host switching events to mammals. By combining phylogenomics, molecular dating and cophylogenetic analyses, we provide the first large‐scale picture of amblyceran evolution, which will serve as a basis for future studies of this group. 
    more » « less
  3. Abstract Despite the ubiquity and importance of mutualistic interactions, we know little about the evolutionary genetics underlying their long‐term persistence. As in antagonistic interactions, mutualistic symbioses are characterized by substantial levels of phenotypic and genetic diversity. In contrast to antagonistic interactions, however, we, by and large, do not understand how this variation arises, how it is maintained, nor its implications for future evolutionary change. Currently, we rely on phenotypic models to address the persistence of mutualistic symbioses, but the success of an interaction almost certainly depends heavily on genetic interactions. In this review, we argue that evolutionary genetic models could provide a framework for understanding the causes and consequences of diversity and why selection may favour processes that maintain variation in mutualistic interactions. 
    more » « less
  4. This course-based undergraduate research experience (CURE) focuses on developing hypotheses about how traits influence the range sizes of species. Topics with substantive content include symbioses, the Appalachian Mountains, lichen morphology, and natural history collections. Scientific skills development modules focus on hypothesis development and testing, geographic information systems, statistics, and preparing presentations and manuscripts. The CURE leverages a large-scale digitized set of freely available images of lichen herbarium specimens. It can be implemented in in-person, online, or hybrid classrooms and only requires students have access to a computer and the internet. 
    more » « less
  5. Ocean ecosystems are experiencing unprecedented rates of climate and anthropogenic change, which can often initiate stress in marine organisms. Symbioses, or associations between different organisms, are plentiful in the ocean and could play a significant role in facilitating organismal adaptations to stressful ocean conditions. This article reviews current knowledge about the role of symbiosis in marine organismal acclimation and adaptation. It discusses stress and adaptations in symbioses from coral reef ecosystems, which are among the most affected environments in the ocean, including the relationships between corals and microalgae, corals and bacteria, anemones and clownfish, and cleaner fish and client fish. Despite the importance of this subject, knowledge of how marine organisms adapt to stress is still limited, and there are vast opportunities for research and technological development in this area. Attention to this subject will enhance our understanding of the capacity of symbioses to alleviate organismal stress in the oceans. 
    more » « less