skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effect of Dust Hygroscopicity on Soiling and Self-Cleaning Processes in a Condensing Environment
Dew promotes chemical interactions between soilants and glass that lead to increased soiling rates and cleaning costs. Anti-soiling coatings have been developed to address these issues, and prior experiments have quantified the soiling impact of several categories of particle chemistries. In this paper, the impact that the hygroscopicity of a soilant has on soiling and cleaning values was measured on hydrophobic coated glass and compared to bare glass samples. Results will be presented from UV -visible direct transmittance and optical image processing measurements to characterize soiling and self-cleaning of surfaces as a function of particle hygroscopicity in a condensing environment, mimicking natural dew conditions.  more » « less
Award ID(s):
1805179
PAR ID:
10387579
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Effect of Dust Hygroscopicity on Soiling and Self-Cleaning Processes in a Condensing Environment
Page Range / eLocation ID:
0588 to 0590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accumulated dust on solar cover glass reduces transmittance, leading to decreased energy efficiency of photovoltaic (PV) modules. Hydrophobic coatings on solar cover glass have been shown to provide anti-soiling properties when exposed to a condensing environment (e.g. dew). The addition of hydrophilic features along the top edge of the hydrophobic coated glass enhances condensation rates and can be used to achieve self-cleaning of the surfaces. However, to date, relatively long times have been required to clean the surfaces. In this study, we developed a new design for hydrophilic features that reduce the time required to clean the surface in laboratory tests as measured by laser scanning microscopy, optical photographs and UV–vis spectroscopy. The dagger-shaped features improve self-cleaning performance by a combination of three factors: a silica nanoparticle (NP) hydrophilic coating which enhances condensation rate due to a low water contact angle (WCA) and nano-scale porosity; the stepwise transition from the low WCA silica NP region to the high WCA silanized hydrophobic region via a bare glass transition zone; and the pointed shape of the hydrophobic dagger features which further minimizes the barrier for transport of droplets from the condensing region to the high-mobility, hydrophobic, region of the surface. The hydrophilic silica nanoparticle-coated dagger features not only improve the self-cleaning efficiency of the hydrophobic surfaces but also increase the overall amount of water harvested. Such coating designs provide an effective approach to reducing maintenance costs as well as increasing the overall energy output of PV panels. 
    more » « less
  2. ABSTRACT Bioinspired micromanipulators have been made based on gecko dynamic self-cleaning mechanism. Various particles such as spherical SiO 2 /polystyrene, and short fibrous glass can be captured, transmitted and dropped on glass substrate with precisely predesigned patterns, by using the micromanipulator with the help of atomic force microscope (AFM). It has been demonstrated that particle-pad interface and particle-substrate interface exhibit diverse adhesion behaviors under different z-piezo retracting speed. The particle-substrate adhesion increases faster than the particle-pad adhesion with increasing the detaching velocity, which makes it possible to manipulate the particles by adjusting the retreating speed only. Probability tests was performed to better choose suitable parameters for picking and dropping operations. This work provides a potential solution to manipulation of micro/nano particles for precise assembly. 
    more » « less
  3. Ambient aerosol particles can undergo dynamic mixing processes as they coagulate with particles from other air masses and emission sources. Therefore, aerosols exist in a spectrum, from externally mixed to internally mixed. The mixing state of aerosols can affect their ability to uptake water (hygroscopicity) and their cloud condensation nuclei (CCN) activity, modifying their contribution to the planet’s total radiative budget. However, current water-uptake measurement methods may not be able to capture the complex mixing state. In this research, the dynamic mixing process was simulated by the particle-resolved aerosol model PartMC and also created by experiments in a laminar flow mixing tube. The mixing evolution of ammonium sulfate and sucrose binary mixtures were observed along with the changes in their water uptake properties expressed as the single hygroscopicity parameter, κ. The use of a mixing simulation in conjunction with experiments allow for better identification of the particle mixing state and the particle water uptake and show that no one kappa value can capture the complexity of mixing across the mixed particle size distribution. In other words, the PartMC simulations can be used as a guiding tool to interpret a system’s mixing state based on its experimental droplet activation spectra. This work demonstrates the importance of the integration and use of mixing models to aid in mixing state determination and hygroscopicity measurements of mixed systems. 
    more » « less
  4. Nitrogen-containing Organic Carbon (NOC) is a major constituent of atmospheric aerosols and they have received significant attention in the atmospheric science community. While extensive research and advancements have been made regarding their emission sources, concentrations, and their secondary formation in the atmosphere, little is known about their water uptake efficiencies and their subsequent role in climate, air quality, and visibility. In this study, we investigated the water uptake of two sparingly soluble aromatic NOCs: o -aminophenol (oAP) and p -aminophenol (pAP) under subsaturated and supersaturated conditions using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC), respectively. Our results show that oAP and pAP are slightly hygroscopic with comparable hygroscopicities to various studied organic aerosols. The supersaturated single hygroscopicity parameter ( κ CCN ) was measured and reported to be 0.18 ± 0.05 for oAP and 0.04 ± 0.02 for pAP, indicating that oAP is more hygroscopic than pAP despite them having the same molecular formulae. The observed disparity in hygroscopicity is attributed to the difference in functional group locations, interactions with gas phase water molecules, and the reported bulk water solubilities of the NOC. Under subsaturated conditions, both oAP and pAP aerosols showed size dependent water uptake. Both species demonstrated growth at smaller dry particle sizes, and shrinkage at larger dry particle sizes. The measured growth factor ( G f ) range, at RH = 85%, for oAP was 1.60–0.74 and for pAP was 1.53–0.74 with increasing particle size. The growth and shrinkage dichotomy is attributed to morphological particle differences verified by TEM images of small and large particles. Subsequently, aerosol physicochemical properties must be considered to properly predict the droplet growth of NOC aerosols in the atmosphere. 
    more » « less
  5. Nicole Riemer (Ed.)
    Aerosol particles in the atmosphere have the ability to uptake water and form droplets. The droplets formed can interact with solar radiation (indirect effect of aerosols) and influence the net radiative forcing. However, the magnitude of change in radiative forcing due to the indirect effect of aerosols remains uncertain due to the high variance in aerosol composition and mixing states, both spatial and temporally. As such, there is a need to measure the water-uptake of different aerosol particle groups under controlled conditions to gain insight into the water-uptake of complex ambient systems. In this work, the water-uptake (hygroscopicity) of internally and externally mixed ammonium sulfate – organic binary mixtures were directly measured via three methods and compared to droplet growth prediction models. We found that subsaturated water-uptake of ammonium sulfate-organic mixtures agreed with their supersaturated hygroscopicity, and mixing state information was able to be retrieved at both humidity regimes. In addition, we found that solubility-adjusted models may not be able to capture the water-uptake of viscous particles, and for soluble organic aerosol particles, bulk solubility may not be comparable to their solubility in a droplet. This work highlights the importance of using multiple complementary water-uptake measurement instruments to get a clearer picture of mixed aerosol particle hygroscopicity, especially for increasingly complex systems. 
    more » « less