skip to main content


Title: Effects of Mixing State on Water-Uptake Properties of Ammonium Sulfate – Organic Mixtures
Aerosol particles in the atmosphere have the ability to uptake water and form droplets. The droplets formed can interact with solar radiation (indirect effect of aerosols) and influence the net radiative forcing. However, the magnitude of change in radiative forcing due to the indirect effect of aerosols remains uncertain due to the high variance in aerosol composition and mixing states, both spatial and temporally. As such, there is a need to measure the water-uptake of different aerosol particle groups under controlled conditions to gain insight into the water-uptake of complex ambient systems. In this work, the water-uptake (hygroscopicity) of internally and externally mixed ammonium sulfate – organic binary mixtures were directly measured via three methods and compared to droplet growth prediction models. We found that subsaturated water-uptake of ammonium sulfate-organic mixtures agreed with their supersaturated hygroscopicity, and mixing state information was able to be retrieved at both humidity regimes. In addition, we found that solubility-adjusted models may not be able to capture the water-uptake of viscous particles, and for soluble organic aerosol particles, bulk solubility may not be comparable to their solubility in a droplet. This work highlights the importance of using multiple complementary water-uptake measurement instruments to get a clearer picture of mixed aerosol particle hygroscopicity, especially for increasingly complex systems.  more » « less
Award ID(s):
1723920 2124489 2124490
NSF-PAR ID:
10350181
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Nicole Riemer
Date Published:
Journal Name:
Aerosol Science and Technology
ISSN:
0278-6826
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ambient aerosol particles can undergo dynamic mixing processes as they coagulate with particles from other air masses and emission sources. Therefore, aerosols exist in a spectrum, from externally mixed to internally mixed. The mixing state of aerosols can affect their ability to uptake water (hygroscopicity) and their cloud condensation nuclei (CCN) activity, modifying their contribution to the planet’s total radiative budget. However, current water-uptake measurement methods may not be able to capture the complex mixing state. In this research, the dynamic mixing process was simulated by the particle-resolved aerosol model PartMC and also created by experiments in a laminar flow mixing tube. The mixing evolution of ammonium sulfate and sucrose binary mixtures were observed along with the changes in their water uptake properties expressed as the single hygroscopicity parameter, κ. The use of a mixing simulation in conjunction with experiments allow for better identification of the particle mixing state and the particle water uptake and show that no one kappa value can capture the complexity of mixing across the mixed particle size distribution. In other words, the PartMC simulations can be used as a guiding tool to interpret a system’s mixing state based on its experimental droplet activation spectra. This work demonstrates the importance of the integration and use of mixing models to aid in mixing state determination and hygroscopicity measurements of mixed systems. 
    more » « less
  2. Atmospheric aerosols are key contributors to cloud condensation nuclei (CCN) and ice nucleating particle (INP) formation, which can offset positive radiative forcing. Aerosol particles can undergo many cycles of droplet activation and subsequent drying before their removal from the atmosphere through dry or wet deposition. Cloud-aerosol-precipitation interactions are affected by cloud droplet or ice crystal formation, which is related to the physicochemical properties of aerosol particles. Isoprene-derived secondary organic aerosol (iSOA) is an abundant component aerosol and has been previously found in INPs and cloud water residues, and it includes both soluble and insoluble residues in its particle matrix. Currently, most of our understanding of iSOA is derived from studying the soluble residues, but there has been a measurement gap for characterizing the insoluble residues. These measurements are needed as previous research has suggested that insoluble components could be important with respect to CCN and INP formation. Herein, a unique approach is utilized to collect the insoluble residues of SOA in ~3 μm droplets collected from a Spot Sampler from Aerosol Devices, Inc. iSOA is generated by reactive uptake of IEPOX onto acidic seed particles (ammonium sulfate + sulfuric acid) in a humidified atmospheric chamber under dark conditions. Droplets are impacted directly on a substrate or in a liquid medium to study the roles of insoluble residues from both single-particle and bulk perspectives. A suite of microspectroscopy techniques, including Raman and optical photothermal infrared (O-PTIR) spectroscopy, are used to probe the chemical composition of the residues. Atomic force microscopy – photothermal infrared (AFM-PTIR) spectroscopy and Nanoparticle Tracking Analysis (NTA) are used to measure the size distributions of the residues. These insights may help understand the properties of residues from cloud droplet evaporation and subsequent cloud-aerosol-precipitation interactions in the atmosphere. 
    more » « less
  3. Abstract. This study presents a characterization of the hygroscopic growth behaviour and effects of different inorganic seed particles on the formation of secondary organic aerosols (SOAs) from the dark ozone-initiated oxidation of isoprene at low NOx conditions. We performed simulations of isoprene oxidation using a gas-phase chemical reaction mechanism based onthe Master Chemical Mechanism (MCM) in combination with an equilibriumgas–particle partitioning model to predict the SOA concentration. Theequilibrium model accounts for non-ideal mixing in liquid phases, includingliquid–liquid phase separation (LLPS), and is based on the AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients) model for mixture non-ideality and the EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature,Intramolecular, and Non-additivity effects) model for pure compound vapourpressures. Measurements from the Cosmics Leaving Outdoor Droplets (CLOUD)chamber experiments, conducted at the European Organization for NuclearResearch (CERN) for isoprene ozonolysis cases, were used to aid inparameterizing the SOA yields at different atmospherically relevanttemperatures, relative humidity (RH), and reacted isoprene concentrations. To represent the isoprene-ozonolysis-derived SOA, a selection of organicsurrogate species is introduced in the coupled modelling system. The modelpredicts a single, homogeneously mixed particle phase at all relativehumidity levels for SOA formation in the absence of any inorganic seedparticles. In the presence of aqueous sulfuric acid or ammonium bisulfateseed particles, the model predicts LLPS to occur below ∼ 80 % RH, where the particles consist of an inorganic-rich liquid phase andan organic-rich liquid phase; however, this includes significant amounts of bisulfate and water partitioned to the organic-rich phase. The measurements show an enhancement in the SOA amounts at 85 % RH, compared to 35 % RH, for both the seed-free and seeded cases. The model predictions of RH-dependent SOA yield enhancements at 85 % RH vs. 35 % RH are 1.80 for a seed-free case, 1.52 for the case with ammonium bisulfate seed, and 1.06 for the case with sulfuric acid seed. Predicted SOA yields are enhanced in the presence of an aqueous inorganic seed, regardless of the seed type (ammonium sulfate, ammonium bisulfate, or sulfuric acid) in comparison with seed-free conditions at the same RH level. We discuss the comparison of model-predicted SOA yields with a selection of other laboratory studies on isoprene SOA formation conducted at different temperatures and for a variety of reacted isoprene concentrations. Those studies were conducted at RH levels at or below 40 % with reported SOA mass yields ranging from 0.3 % up to 9.0 %, indicating considerable variations. A robust feature of our associated gas–particle partitioning calculations covering the whole RH range is the predicted enhancement of SOA yield at high RH (> 80 %) compared to low RH (dry) conditions, which is explained by the effect of particle water uptake and its impact on the equilibrium partitioning of all components. 
    more » « less
  4. Abstract. Changes in aerosol chemical mixtures modify cloud condensation nuclei (CCN)activity. Previous studies have developed CCN models and validated changesin external and internal mixing state with ambient field data. Here, wedevelop an experimental method to test and validate the CCN activation ofknown aerosol chemical composition with multicomponent mixtures and varyingmixing states. CCN activation curves consisting of one or more activationpoints are presented. Specifically, simplified two-component systems ofvarying hygroscopicity were generated under internal, external, andtransitional mixing conditions. κ-Köhler theory predictions werecalculated for different organic and inorganic mixtures and compared toexperimentally derived kappa values and respective mixing states. This workemploys novel experimental methods to provide information on the shifts inCCN activation data due to external to internal particle mixing fromcontrolled laboratory sources. Results show that activation curvesconsisting of single and double activation points are consistent withinternal and external mixtures, respectively. In addition, the height of theplateau at the activation points is reflective of the externally mixedconcentration in the mixture. The presence of a plateau indicates that CCNactivation curves consisting of multiple inflection points are externallymixed aerosols of varying water-uptake properties. The plateau disappearswhen mixing is promoted in the flow tube. At the end of the flow tubeexperiment, the aerosols are internally mixed and the CCN activated fractiondata can be fit with a single-sigmoid curve. The technique to mimicexternally to internally mixed aerosol is applied to non-hygroscopiccarbonaceous aerosol with organic and inorganic components. To ourknowledge, this work is the first to show controlled CCN activation of mixednon-hygroscopic soot with hygroscopic material as the aerosol populationtransitions from externally to internally mixed states in laboratoryconditions. Results confirm that CCN activation analysis methods used hereand in ambient data sets are robust and may be used to infer the mixingstate of complex aerosol compositions of unknown origin.

     
    more » « less
  5. Internally-mixed aerosol particles containing organic molecules and inorganic salts are prevalent in the atmosphere, arising from direct emission ( e.g., from the ocean) or indirect production by condensation of organic vapors onto existing inorganic particle seeds. Aerosol particles co-exist with water vapor and, under humid conditions, will exist as dilute aqueous solution particles that can be well described by thermodynamic models. Under low humidity conditions, the increase in solute concentrations leads to molecular interactions and significant non-ideality effects that drive changes in important physical properties, such as viscosity and phase state, that are not predicted using simple models. Here, we explore a model system containing ammonium sulfate (AS) and citric acid (CA). We measure the hygroscopicity, viscosity, and rate of water diffusion in particles across a range of RH conditions and organic fractions to better understand the influence of organic–inorganic mixtures on particle properties. We report the RH dependence of these properties and explore the applicability of commonly used methods that connect them together, such as the Stokes–Einstein relationship and thermodynamic modelling methods. We show that at low RH, the addition of AS to CA leads to a reduction in the amount of water as indicated by the radial growth factor at a fixed RH, while observing an increase in the viscosity over several orders of magnitude. Contrary to the viscosity, only minor changes in water diffusion were measured, and analysis with the fractional Stokes–Einstein relationship indicates that changes in the molecular matrix due to the presence of AS could explain the observed phenomena. This work reveals that small additions of electrolytes can drive large changes in particle properties, with implications for chemical reactivity, lifetime, and particle phase that will influence the environmental impacts and chemistry of aerosol particles. 
    more » « less