skip to main content


Title: The diversity, evolution, and development of setal morphologies in bumble bees (Hymenoptera: Apidae: Bombus spp.)
Bumble bees are characterized by their thick setal pile that imparts aposematic color patterns often used for species-level identification. Like all bees, the single-celled setae of bumble bees are branched, an innovation thought important for pollen collection. To date no studies have quantified the types of setal morphologies and their distribution on these bees, information that can facilitate understanding of their adaptive ecological function. This study defines several major setal morphotypes in the common eastern bumble bee Bombus impatiens Cresson, revealing these setal types differ by location across the body. The positions of these types of setae are similar across individuals, castes, and sexes within species. We analyzed the distribution of the two most common setal types (plumose and spinulate) across the body dorsum of half of the described bumble bee species. This revealed consistently high density of plumose (long-branched) setae across bumble bees on the head and mesosoma, but considerable variation in the amount of metasomal plumosity. Variation on the metasoma shows strong phylogenetic signal at subgeneric and smaller group levels, making it a useful trait for species delimitation research, and plumosity has increased from early Bombus ancestors. The distribution of these setal types suggests these setae may serve several functions, including pollen-collecting and thermoregulatory roles, and probable mechanosensory functions. This study further examines how and when setae of the pile develop, evidence for mechanosensory function, and the timing of pigmentation as a foundation for future genetic and developmental research in these bees.  more » « less
Award ID(s):
2126417
NSF-PAR ID:
10387586
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
PeerJ
Volume:
10
ISSN:
2167-8359
Page Range / eLocation ID:
e14555
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plants have unique chemical and physical traits that can reduce infections in animals ranging from primates to caterpillars. Sunflowers (Helianthus annuus; Asteraceae) are one striking example, with pollen that suppresses infections by the trypanosomatid gut pathogenCrithidia bombiin the common eastern bumble bee (Bombus impatiens). However, the mechanism underlying this effect has remained elusive, and we do not know whether pollens from other Asteraceae species have similar effects.

    We evaluated whether mechanisms mediating sunflower pollen's antipathogenic effects are physical (due to its spiny exine), chemical (due to metabolites) or both. We also evaluated the degree to which pollen from seven other Asteraceae species reducedC. bombiinfection relative to pollen from sunflower and two non‐Asteraceae species, and whether pollen spine length predicted pathogen suppression.

    We found that sunflower exines alone reduced infection as effectively as whole sunflower pollen, while sunflower pollen metabolites did not. Furthermore, bees fed pollen from four of seven other Asteraceae had 62%–92% lowerC. bombiinfections than those fed non‐Asteraceae pollen. Spine length, however, did not explain variation in bumble bee infection.

    Our study indicates that sunflower pollen's capacity to suppressC. bombiis driven by its spiny exine, and that this phenomenon extends to several other Asteraceae species. Our results indicate that sunflower pollen exines are as effective as whole pollen in reducing infection, suggesting that future studies should expand to assess the effects of other species with spiny pollen on pollinator–pathogen dynamics.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. Ware, Jessica (Ed.)
    Abstract Broadly distributed species experience divergent abiotic conditions across their ranges that may drive local adaptation. Montane systems where populations are distributed across both latitudinal and elevational gradients are especially likely to produce local adaptation due to spatial variation in multiple abiotic factors, including temperature, oxygen availability, and air density. We use whole-genome resequencing to evaluate the landscape genomics of Bombus vancouverensis Cresson (Hymenoptera: Apidae), a common montane bumble bee that is distributed throughout the western part of North America. Combined statistical approaches revealed several large windows of outlier SNPs with unusual levels of differentiation across the region and indicated that isothermality and elevation were the environmental features most strongly associated with these variants. Genes found within these regions had diverse biological functions, but included neuromuscular function, ion homeostasis, oxidative stress, and hypoxia that could be associated with tolerance of temperature, desiccation, or high elevation conditions. The whole-genome sequencing approach revealed outliers occurred in genome regions with elevated linkage disequilibrium, elevated mean FST, and low intrapopulation nucleotide diversity. Other kinds of structural variations were not widely associated with environmental predictors but did broadly match geographic separation. Results are consistent with other studies suggesting that regions of low recombination may harbor adaptive variation in bumble bees within as well as between species and refine our understanding of candidate genes that could be further investigated as possible targets of selection across the B. vancouverensis range. 
    more » « less
  3. Globally, insects have been impacted by climate change, with bumble bees in particular showing range shifts and declining species diversity with global warming. This suggests heat tolerance is a likely factor limiting the distribution and success of these bees. Studies have shown high intraspecific variance in bumble bee thermal tolerance, suggesting biological and environmental factors may be impacting heat resilience. Understanding these factors is important for assessing vulnerability and finding environmental solutions to mitigate effects of climate change. In this study, we assess whether geographic range variation in bumble bees in the eastern United States is associated with heat tolerance and further dissect which other biological and environmental factors explain variation in heat sensitivity in these bees. We examine heat tolerance by caste, sex, and rearing condition (wild/lab) across six eastern US bumble bee species, and assess the role of age, reproductive status, body size, and interactive effects of humidity and temperature on thermal tolerance inBombus impatiens. We found marked differences in heat tolerance by species that correlate with each species' latitudinal range, habitat, and climatic niche, and we found significant variation in thermal sensitivity by caste and sex. Queens had considerably lower heat tolerance than workers and males, with greater tolerance when queens would first be leaving their natal nest, and lower tolerance after ovary activation. Wild bees tended to have higher heat tolerance than lab reared bees, and body size was associated with heat tolerance only in wild‐caught foragers. Humidity showed a strong interaction with heat effects, pointing to the need to regulate relative humidity in thermal assays and consider its role in nature. Altogether, we found most tested biological conditions impact thermal tolerance and highlight the stages of these bees that will be most sensitive to future climate change. 
    more » « less
  4. Abstract

    Understanding habitat quality is central to understanding the distributions of species on the landscape, as well as to conserving and restoring at‐risk species. Although it is well known that many species require different resources throughout their life cycles, pollinator conservation efforts focus almost exclusively on forage resources. In this study, we evaluate nesting habitat for bumble bees by locating nests directly on the landscape. We compared colony density and colony reproductive output forBombus impatiens, the common eastern bumble bee, across three different land cover types (hay fields, meadows, and forests). We also assessed nesting habitat associations for allBombusnests located during surveys to tease apart species‐specific patterns of habitat use. We found thatB. impatiensnested under the ground in two natural land cover types, forests, and meadows, but found noB. impatiensnests in hay fields. ThoughB. impatiensnested at similar densities in both meadows and forests, colonies in forests had much higher reproductive output. In contrast,B. griseocollistended to nest on the surface of the ground and was almost always found in meadows.B. perplexiswas the only species to nest in all three habitat types, including hay fields. For some bumble bee species in this system, meadows, the habitat type with abundant forage resources, may be sufficient to maintain them throughout their life cycles. However,B. impatiensmight benefit from heterogeneous landscapes with forests and meadows. Results forB. impatiensemphasize the longstanding notion that habitat use is not always positively correlated with habitat quality (as measured by reproductive output). Our results also show that habitat selection by bumble bees at one spatial scale may be influenced by resources at other scales. Finally, we demonstrate the feasibility of direct nest searches for understanding bumble bee distribution and ecology.

     
    more » « less
  5. Abstract

    Bumble bees exhibit exceptional diversity in their segmental body coloration largely as a result of mimicry. In this study we sought to discover genes involved in this variation through studying a lab-generated mutant in bumble beeBombus terrestris,in which the typical black coloration of the pleuron, scutellum, and first metasomal tergite is replaced by yellow, a color variant also found in sister lineages toB. terrestris. Utilizing a combination of RAD-Seq and whole-genome re-sequencing, we localized the color-generating variant to a single SNP in the protein-coding sequence of transcription factorcut. This mutation generates an amino acid change that modifies the conformation of a coiled-coil structure outside DNA-binding domains. We found that all sequenced Hymenoptera, including sister lineages, possess the non-mutant allele, indicating different mechanisms are involved in the same color transition in nature.Cutis important for multiple facets of development, yet this mutation generated no noticeable external phenotypic effects outside of setal characteristics. Reproductive capacity was reduced, however, as queens were less likely to mate and produce female offspring, exhibiting behavior similar to that of workers. Our research implicates a novel developmental player in pigmentation, and potentially caste, thus contributing to a better understanding of the evolution of diversity in both of these processes.

     
    more » « less