skip to main content

Title: Improved coarse‐grained model for studying sequence dependent phase separation of disordered proteins

We present improvements to thehydropathyscale (HPS) coarse‐grained (CG) model for simulating sequence‐specific behavior of intrinsically disordered proteins (IDPs), including their liquid–liquid phase separation (LLPS). The previous model based on an atomistic hydropathy scale by Kapcha and Rossky (KR scale) is not able to capture some well‐known LLPS trends such as reduced phase separation propensity upon mutations (R‐to‐K and Y‐to‐F). Here, we propose to use the Urry hydropathy scale instead, which was derived from the inverse temperature transitions in a model polypeptide with guest residues X. We introduce two free parameters to shift (Δ) and scale (µ) the overall interaction strengths for the new model (HPS‐Urry) and use the experimental radius of gyration for a diverse group of IDPs to find their optimal values. Interestingly, many possible (Δ,µ) combinations can be used for typical IDPs, but the phase behavior of a low‐complexity (LC) sequence FUS is only well described by one of these models, which highlights the need for a careful validation strategy based on multiple proteins. The CG HPS‐Urry model should enable accurate simulations of protein LLPS and provide a microscopically detailed view of molecular interactions.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Page Range / eLocation ID:
p. 1371-1379
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Ribonucleoprotein (RNP) granules are membraneless organelles (MLOs), which majorly consist of RNA and RNA-binding proteins and are formed via liquid–liquid phase separation (LLPS). Experimental studies investigating the drivers of LLPS have shown that intrinsically disordered proteins (IDPs) and nucleic acids like RNA and other polynucleotides play a key role in modulating protein phase separation. There is currently a dearth of modelling techniques which allow one to delve deeper into how polynucleotides play the role of a modulator/promoter of LLPS in cells using computational methods. Here, we present a coarse-grained polynucleotide model developed to fill this gap, which together with our recently developed HPS model for protein LLPS, allows us to capture the factors driving protein-polynucleotide phase separation. We explore the capabilities of the modelling framework with the LAF-1 RGG system which has been well studied in experiments and also with the HPS model previously. Further taking advantage of the fact that the HPS model maintains sequence specificity we explore the role of charge patterning on controlling polynucleotide incorporation into condensates. With increased charge patterning we observe formation of structured or patterned condensates which suggests the possible roles of polynucleotides in not only shifting the phase boundaries but also introducing microscopic organization in MLOs. 
    more » « less
  2. Abstract

    Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine’s ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine’s ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems.

    more » « less
  3. Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.

    more » « less
  4. Abstract

    The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid–solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid–liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.

    more » « less
  5. Intracellular compartmentalization plays a pivotal role in cellular function, with membrane-bound organelles and membrane-less biomolecular 'condensates' playing key roles. These condensates, formed through liquid-liquid phase separation (LLPS), enable selective compartmentalization without the barrier of a lipid bilayer, thereby facilitating rapid formation/dissolution in response to stimuli. Intrinsically disordered proteins (IDPs) and/or proteins with intrinsically disordered regions (IDRs), which are often rich in charged and polar amino acid sequences, scaffold many condensates, often in conjunction with RNA. Comprehending the impact of IDP/IDR sequences on phase separation poses a challenge due to the extensive chemical diversity resulting from the myriad amino acids and post-translational modifications. To tackle this hurdle, one approach has been to investigate LLPS in simplified polypeptide systems, which offer a narrower scope within the chemical space for exploration. This strategy is supported by studies that have demonstrated how IDP function can largely be understood based on general chemical features, such as clusters or patterns of charged amino acids, rather than residue-level effects, and the ways in which these kinds of motifs give rise to an ensemble of conformations. Our lab has utilized complex coacervates assembled from oppositely-charged polypeptides as a simplified material analogue to the complexity of liquid-liquid phase separated biological condensates. Complex coacervation is an associative LLPS that occurs due to the electrostatic complexation of oppositely-charged macro-ions. This process is believed to be driven by the entropic gains resulting from the release of bound counterions and the reorganization of water upon complex formation. Apart from their direct applicability to IDPs, polypeptides also serve as excellent model polymers for investigating molecular interactions due to the wide range of available side-chain functionalities and the capacity to finely regulate their sequence, thus enabling precise control over interactions with guest molecules. Here, we discuss fundamental studies examining how charge patterning, hydrophobicity, chirality, and architecture affect the phase separation of polypeptide-based complex coacervates. These efforts have leveraged a combination of experimental and computational approaches that provide insight into the molecular level interactions. We also examine how these parameters affect the ability of complex coacervates to incorporate globular proteins and viruses. These efforts couple directly with our fundamental studies into coacervate formation, as such ‘guest’ molecules should not be considered as experiencing simple encapsulation and are instead active participants in the electrostatic assembly of coacervate materials. Interestingly, we observed trends in the incorporation of proteins and viruses into coacervates formed using different chain length polypeptides that are not well explained by simple electrostatic arguments and may be the result of more complex interactions between globular and polymeric species. Additionally, we describe experimental evidence supporting the potential for complex coacervates to improve the thermal stability of embedded biomolecules such as viral vaccines. Ultimately, peptide-based coacervates have the potential to help unravel the physics behind biological condensates while paving the way for innovative methods in compartmentalization, purification, and biomolecule stabilization. These advancements could have implications spanning from medicine to biocatalysis. 
    more » « less