skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DNA double helix, a tiny electromotor
Flowing fluid past chiral objects has been used for centuries to power rotary motion in man-made machines. By contrast, rotary motion in nanoscale biological or chemical systems is produced by biasing Brownian motion through cyclic chemical reactions. Here we show that a chiral biological molecule, a DNA or RNA duplex rotates unidirectionally at billions of revolutions per minute when an electric field is applied along the duplex, with the rotation direction being determined by the chirality of the duplex. The rotation is found to be powered by the drag force of the electro-osmotic flow, realizing the operating principle of a macroscopic turbine at the nanoscale. The resulting torques are sufficient to power rotation of nanoscale beads and rods, offering an engineering principle for constructing nanoscale systems powered by electric field.  more » « less
Award ID(s):
1827346
PAR ID:
10387695
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nature Nanotechnology
ISSN:
1748-3387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chiral fluids – such as fluids under rotation or a magnetic field as well as synthetic and biological active fluids – flow in a different way than ordinary ones. Due to symmetries broken at the microscopic level, chiral fluids may have asymmetric stress and viscosity tensors, for example giving rise to a hydrostatic torque or non-dissipative (odd) and parity-violating viscosities. In this article, we investigate the motion of rigid bodies in such an anisotropic fluid in the incompressible Stokes regime through the mobility matrix, which encodes the response of a solid body to forces and torques. We demonstrate how the form of the mobility matrix, which is usually determined by particle geometry, can be analogously controlled by the symmetries of the fluid. By computing the mobility matrix for simple shapes in a three-dimensional (3-D) anisotropic chiral fluid, we predict counterintuitive phenomena such as motion at an angle to the direction of applied forces and spinning under the force of gravity. 
    more » « less
  2. Abstract Biological molecular motors transform chemical energy into mechanical work by coupling cyclic catalytic reactions to large-scale structural transitions. Mechanical deformation can be surprisingly efficient in realizing such coupling, as demonstrated by the F 1 F O ATP synthase. Here, we describe a synthetic molecular mechanism that transforms a rotary motion of an asymmetric camshaft into reciprocating large-scale transitions in a surrounding stator orchestrated by mechanical deformation. We design the mechanism using DNA origami, characterize its structure via cryo-electron microscopy, and examine its dynamic behavior using single-particle fluorescence microscopy and molecular dynamics simulations. While the camshaft can rotate inside the stator by diffusion, the stator’s mechanics makes the camshaft pause at preferred orientations. By changing the stator’s mechanical stiffness, we accelerate or suppress the Brownian rotation, demonstrating an allosteric coupling between the camshaft and the stator. Our mechanism provides a framework for manufacturing artificial nanomachines that function because of coordinated movements of their components. 
    more » « less
  3. Abstract The very chemical structure of DNA that enables biological heredity and evolution has non‐trivial implications for the self‐organization of DNA molecules into larger assemblies and provides limitless opportunities for building functional nanostructures. This progress report discusses the natural organization of DNA into chiral structures and recent advances in creating synthetic chiral systems using DNA as a building material. How nucleic acid chirality naturally comes into play in a diverse array of situations is considered first, at length scales ranging from an individual nucleotide to entire chromosomes. Thereafter, chiral liquid crystal phases formed by dense DNA mixtures are discussed, including the ongoing efforts to understand their origins. The report then summarizes recent efforts directed toward building chiral structures, and other structures of complex topology, using the principle of DNA self‐assembly. Discussed last are existing and proposed functional man‐made nanostructures designed to either probe or harness DNA's chirality, from plasmonics and spintronics to biosensing. 
    more » « less
  4. Abstract Time reversal symmetry stands as a fundamental restriction on the vast majority of optical systems and devices. The reciprocal nature of Maxwell’s equations in linear, time-invariant media adds complexity and scale to photonic diodes, isolators, circulators and also sets fundamental efficiency limits on optical energy conversion. Though many theoretical proposals and low frequency demonstrations of nonreciprocity exist, Faraday rotation remains the only known nonreciprocal mechanism that persists down to the atomic scale. Here, we present photon-spin-polarized stimulated Raman scattering as a new nonreciprocal optical phenomenon which has, in principle, no lower size limit. Exploiting this process, we numerically demonstrate nanoscale nonreciprocal transmission of free-space beams at near-infrared frequencies with a 250 nm thick silicon metasurface as well as a fully-subwavelength plasmonic gap nanoantenna. In revealing all-optical spin-splitting, our results provide a foundation for compact nonreciprocal communication and computing technologies, from nanoscale optical isolators and full-duplex nanoantennas to topologically-protected networks. 
    more » « less
  5. Optical tweezers have emerged as a powerful tool for the non-invasive trapping and manipulation of colloidal particles and biological cells1,2. However, the diffraction limit precludes the low-power trapping of nanometre-scale objects. Substantially increasing the laser power can provide enough trapping potential depth to trap nanoscale objects. Unfortunately, the substantial optical intensity required causes photo-toxicity and thermal stress in the trapped biological specimens3. Low-power near-field nano-optical tweezers comprising plasmonic nanoantennas and photonic crystal cavities have been explored for stable nanoscale object trapping4,5,6,7,8,9,10,11,12,13. However, the demonstrated approaches still require that the object is trapped at the high-light-intensity region. We report a new kind of optically controlled nanotweezers, called opto-thermo-electrohydrodynamic tweezers, that enable the trapping and dynamic manipulation of nanometre-scale objects at locations that are several micrometres away from the high-intensity laser focus. At the trapping locations, the nanoscale objects experience both negligible photothermal heating and light intensity. Opto-thermo-electrohydrodynamic tweezers employ a finite array of plasmonic nanoholes illuminated with light and an applied a.c. electric field to create the spatially varying electrohydrodynamic potential that can rapidly trap sub-10 nm biomolecules at femtomolar concentrations on demand. This non-invasive optical nanotweezing approach is expected to open new opportunities in nanoscience and life science by offering an unprecedented level of control of nano-sized objects, including photo-sensitive biological molecules. 
    more » « less