skip to main content


Title: DNA double helix, a tiny electromotor
Flowing fluid past chiral objects has been used for centuries to power rotary motion in man-made machines. By contrast, rotary motion in nanoscale biological or chemical systems is produced by biasing Brownian motion through cyclic chemical reactions. Here we show that a chiral biological molecule, a DNA or RNA duplex rotates unidirectionally at billions of revolutions per minute when an electric field is applied along the duplex, with the rotation direction being determined by the chirality of the duplex. The rotation is found to be powered by the drag force of the electro-osmotic flow, realizing the operating principle of a macroscopic turbine at the nanoscale. The resulting torques are sufficient to power rotation of nanoscale beads and rods, offering an engineering principle for constructing nanoscale systems powered by electric field.  more » « less
Award ID(s):
1827346
NSF-PAR ID:
10387695
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nature Nanotechnology
ISSN:
1748-3387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rotary motors play key roles in energy transduction, from macroscale windmills to nanoscale turbines such as ATP synthase in cells. Despite our abilities to construct engines at many scales, developing functional synthetic turbines at the nanoscale has remained challenging. Here, we experimentally demonstrate rationally designed nanoscale DNA origami turbines with three chiral blades. These DNA nanoturbines are 24–27 nm in height and diameter and can utilize transmembrane electrochemical potentials across nanopores to drive DNA bundles into sustained unidirectional rotations of up to 10 revolutions s−1. The rotation direction is set by the designed chirality of the turbine. All-atom molecular dynamics simulations show how hydrodynamic flows drive this turbine. At high salt concentrations, the rotation direction of turbines with the same chirality is reversed, which is explained by a change in the anisotropy of the electrophoretic mobility. Our artificial turbines operate autonomously in physiological conditions, converting energy from naturally abundant electrochemical potentials into mechanical work. The results open new possibilities for engineering active robotics at the nanoscale.

     
    more » « less
  2. Abstract

    Time reversal symmetry stands as a fundamental restriction on the vast majority of optical systems and devices. The reciprocal nature of Maxwell’s equations in linear, time-invariant media adds complexity and scale to photonic diodes, isolators, circulators and also sets fundamental efficiency limits on optical energy conversion. Though many theoretical proposals and low frequency demonstrations of nonreciprocity exist, Faraday rotation remains the only known nonreciprocal mechanism that persists down to the atomic scale. Here, we present photon-spin-polarized stimulated Raman scattering as a new nonreciprocal optical phenomenon which has, in principle, no lower size limit. Exploiting this process, we numerically demonstrate nanoscale nonreciprocal transmission of free-space beams at near-infrared frequencies with a 250 nm thick silicon metasurface as well as a fully-subwavelength plasmonic gap nanoantenna. In revealing all-optical spin-splitting, our results provide a foundation for compact nonreciprocal communication and computing technologies, from nanoscale optical isolators and full-duplex nanoantennas to topologically-protected networks.

     
    more » « less
  3. Abstract Biological molecular motors transform chemical energy into mechanical work by coupling cyclic catalytic reactions to large-scale structural transitions. Mechanical deformation can be surprisingly efficient in realizing such coupling, as demonstrated by the F 1 F O ATP synthase. Here, we describe a synthetic molecular mechanism that transforms a rotary motion of an asymmetric camshaft into reciprocating large-scale transitions in a surrounding stator orchestrated by mechanical deformation. We design the mechanism using DNA origami, characterize its structure via cryo-electron microscopy, and examine its dynamic behavior using single-particle fluorescence microscopy and molecular dynamics simulations. While the camshaft can rotate inside the stator by diffusion, the stator’s mechanics makes the camshaft pause at preferred orientations. By changing the stator’s mechanical stiffness, we accelerate or suppress the Brownian rotation, demonstrating an allosteric coupling between the camshaft and the stator. Our mechanism provides a framework for manufacturing artificial nanomachines that function because of coordinated movements of their components. 
    more » « less
  4. Abstract

    This work presents the first simulations of the full optical rotation (OR) tensor at coupled cluster with single and double excitations (CCSD) level in the modified velocity gauge (MVG) formalism. The CCSD‐MVG OR tensor is origin independent, and each tensor element can in principle be related directly to experimental measurements on oriented systems. We compare the CCSD results with those from two density functionals, B3LYP and CAM‐B3LYP, on a test set of 22 chiral molecules. The results show that the functionals consistently overestimate the CCSD results for the individual tensor components and for the trace (which is related to the isotropic OR), by 10%–20% with CAM‐B3LYP and 20%–30% with B3LYP. The data show that the contribution of the electric dipole–magnetic dipole polarizability tensor to the OR tensor is on average twice as large as that of the electric dipole–electric quadrupole polarizability tensor. The difficult case of (1S,4S)‐(–)‐norbornenone also reveals that the evaluation of the former polarizability tensor is more sensitive than the latter. We attribute the better agreement of CAM‐B3LYP with CCSD to the ability of this functional to better reproduce electron delocalization compared with B3LYP, consistent with previous reports on isotropic OR. The CCSD‐MVG approach allows the computation of reference data of the full OR tensor, which may be used to test more computationally efficient approximate methods that can be employed to study realistic models of optically active materials.

     
    more » « less
  5. Light provides a powerful means of controlling physical behavior of materials but is rarely used to power and guide active matter systems. We demonstrate optical control of liquid crystalline topological solitons dubbed “skyrmions”, which recently emerged as highly reconfigurable inanimate active particles capable of exhibiting emergent collective behaviors like schooling. Because of a chiral nematic liquid crystal’s natural tendency to twist and its facile response to electric fields and light, it serves as a testbed for dynamic control of skyrmions and other active particles. Using ambient-intensity unstructured light, we demonstrate large-scale multifaceted reconfigurations and unjamming of collective skyrmion motions powered by oscillating electric fields and guided by optically-induced obstacles and patterned illumination.

     
    more » « less