skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stress accumulation versus shape flattening in frustrated, warped-jigsaw particle assemblies
Abstract Geometrically frustrated assembly has emerged as an attractive paradigm for understanding and engineering assemblies with self-limiting, finite equilibrium dimensions. We propose and study a novel 2D particle based on a so-called ‘warped jigsaw’ (WJ) shape design: directional bonds in a tapered particle favor curvature along multi-particle rows that frustrate 2D lattice order. We investigate how large-scale intra-assembly stress gradients emerge from the microscopic properties of the particles using a combination of numerical simulation and continuum elasticity. WJ particles can favor anisotropic ribbon assemblies, whose lateral width may be self-limiting depending on the relative strength of cohesive to elastic forces in the assembly, which we show to be controlled by the range of interactions and degree of shape misfit. The upper limits of self-limited size are controlled by the crossover between two elastic modes in assembly: the accumulation of shear with increasing width at small widths giving way to unbending of preferred row curvature, permitting assembly to grow to unlimited sizes. We show that the stiffness controlling distinct elastic modes is governed by combination and placement of repulsive and attractive binding regions, providing a means to extend the range of accumulating stress to sizes that are far in excess of the single particle size, which we corroborate via numerical studies of discrete particles of variable interactions. Lastly, we relate the ground-state energetics of the model to lower and upper limits on equilibrium assembly size control set by the fluctuations of width along the ribbon boundary.  more » « less
Award ID(s):
2028885
PAR ID:
10387712
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
New Journal of Physics
Volume:
24
Issue:
6
ISSN:
1367-2630
Page Range / eLocation ID:
063023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Geometric frustration offers a pathway to soft matter self-assembly with controllable finite sizes. While the understanding of frustration in soft matter assembly derives almost exclusively from continuum elastic descriptions, a current challenge is to understand the connection between microscopic physical properties of misfitting “building blocks” and emergent assembly behavior at the mesoscale. We present and analyze a particle-based description of what is arguably the best studied example for frustrated soft matter assembly, negative-curvature ribbon assembly, observed in both assemblies of chiral surfactants and shape-frustrated nanoparticles. Based on our particle model, known as saddle wedge monomers, we numerically test the connection between microscopic shape and interactions of the misfitting subunits and the emergent behavior at the supra-particle scale, specifically focussing on the propagation and relaxation of inter-particle strains, the emergent role of extrinsic shape on frustrated ribbons and the equilibrium regime of finite width selection. Beyond the intuitive role of shape misfit, we show that self-limitation is critically dependent on the finite range of cohesive interactions, with larger size finite assemblies requiring increasing short-range interparticle forces. Additionally, we demonstrate that non-linearities arising from discrete particle interactions alter self-limiting behavior due to both strain-softening in shape-flattened assembly and partial yielding of highly strained bonds, which in turn may give rise to states of hierarchical, multidomain assembly. Tracing the regimes of frustration-limited assembly to the specific microscopic features of misfitting particle shapes and interactions provides necessary guidance for translating the theory of size-programmable assembly into design of intentionally-frustrated colloidal particles. 
    more » « less
  2. In most synthetic self-assembly processes the size of the final structure grows unbound and is only limited by the number of accessible microscopic building blocks. In comparison, biological assemblies can autonomously regulate their size and shape. One mechanism for such self-regulation is based on the chirality of microscopic units. Chirality induces a twisted geometry of building blocks that is incompatible with long-ranged crystalline packing, thereby stopping the assembly’s growth at a given stage. Chiral self-regulating self-assemblies, based on thermodynamic equilibration rather than kinetic trapping, remain an elusive target that has attracted considerable attention. So far studies of chiral self-assembly processes have focused on non-responsive systems, whose equilibrium points are not easily shifted in situ, which limits their versatility and applicability. Here, we demonstrate stimuli-responsive self-regulating self-assembly. This assembly is composed of chiral and magnetically alignable nanorods, where the effective chirality is modulable by balancing chirality-induced twisting with magnet-induced untwisting alignment. Changing the magnetic field intensity, controls the strength of self-regulation, leading to assemblies whose sizes and shapes are rationally controlled. The described size/shape control mechanism is tunable, reversible, robust, and widely applicable, opening up new possibilities for generating biomimetics structures with desirable functions and properties. 
    more » « less
  3. Self-assembly of colloidal particles due to elastic interactions in nematic liquid crystals promises tunable composite materials and can be guided by exploiting surface functionalization, geometric shape and topology, though these means of controlling self-assembly remain limited. Here, we realize low-symmetry achiral and chiral elastic colloids in the nematic liquid crystals using colloidal polygonal concave and convex prisms. We show that the controlled pinning of disclinations at the prism edges alters the symmetry of director distortions around the prisms and their orientation with respect to the far-field director. The controlled localization of the disclinations at the prism's edges significantly influences the anisotropy of the diffusion properties of prisms dispersed in liquid crystals and allows one to modify their self-assembly. We show that elastic interactions between polygonal prisms can be switched between repulsive and attractive just by controlled re-pinning the disclinations at different edges using laser tweezers. Our findings demonstrate that elastic interactions between colloidal particles dispersed in nematic liquid crystals are sensitive to the topologically equivalent but geometrically rich controlled configurations of the particle-induced defects. 
    more » « less
  4. Programmable self-assembly has seen an explosion in the diversity of synthetic crystalline materials, but developing strategies that target “self-limiting” assemblies has remained a challenge. Among these, self-closing structures, in which the local curvature defines the finite global size, are prone to polymorphism due to thermal bending fluctuations, a problem that worsens with increasing target size. Here, we show that assembly complexity can be used to eliminate this source of polymorphism in the assembly of tubules. Using many distinct components, we prune the local density of off-target geometries, increasing the selectivity of the tubule width and helicity to nearly 100%. We further show that by reducing the design constraints to target either the pitch or the width alone, fewer components are needed to reach complete selectivity. Combining experiments with theory, we reveal an economical limit, which determines the minimum number of components required to create arbitrary assembly sizes with full selectivity. 
    more » « less
  5. In contrast to most self-assembling synthetic materials, which undergo unbounded growth, many biological self-assembly processes are self-limited. That is, the assembled structures have one or more finite dimensions that are much larger than the size scale of the individual monomers. In many such cases, the finite dimension is selected by a preferred curvature of the monomers, which leads to self-closure of the assembly. In this article, we study an example class of self-closing assemblies: cylindrical tubules that assemble from triangular monomers. By combining kinetic Monte Carlo simulations, free energy calculations, and simple theoretical models, we show that a range of programmable size scales can be targeted by controlling the intricate balance between the preferred curvature of the monomers and their interaction strengths. However, their assembly is kinetically controlled—the tubule morphology is essentially fixed shortly after closure, resulting in a distribution of tubule widths that is significantly broader than the equilibrium distribution. We develop a simple kinetic model based on this observation and the underlying free-energy landscape of assembling tubules that quantitatively describes the distributions. Our results are consistent with recent experimental observations of tubule assembly from triangular DNA origami monomers. The modeling framework elucidates design principles for assembling self-limited structures from synthetic components, such as artificial microtubules that have a desired width and chirality. 
    more » « less