skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neurodynamical Computing at the Information Boundaries of Intelligent Systems
Abstract Artificial intelligence has not achieved defining features of biological intelligence despite models boasting more parameters than neurons in the human brain. In this perspective article, we synthesize historical approaches to understanding intelligent systems and argue that methodological and epistemic biases in these fields can be resolved by shifting away from cognitivist brain-as-computer theories and recognizing that brains exist within large, interdependent living systems. Integrating the dynamical systems view of cognition with the massive distributed feedback of perceptual control theory highlights a theoretical gap in our understanding of nonreductive neural mechanisms. Cell assemblies—properly conceived as reentrant dynamical flows and not merely as identified groups of neurons—may fill that gap by providing a minimal supraneuronal level of organization that establishes a neurodynamical base layer for computation. By considering information streams from physical embodiment and situational embedding, we discuss this computational base layer in terms of conserved oscillatory and structural properties of cortical-hippocampal networks. Our synthesis of embodied cognition, based in dynamical systems and perceptual control, aims to bypass the neurosymbolic stalemates that have arisen in artificial intelligence, cognitive science, and computational neuroscience.  more » « less
Award ID(s):
1835279
PAR ID:
10387865
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Cognitive Computation
Volume:
16
Issue:
5
ISSN:
1866-9956
Format(s):
Medium: X Size: p. 1-13
Size(s):
p. 1-13
Sponsoring Org:
National Science Foundation
More Like this
  1. Technical advances in artificial manipulation of neural activity have precipitated a surge in studying the causal contribution of brain circuits to cognition and behavior. However, complexities of neural circuits challenge interpretation of experimental results, necessitating new theoretical frameworks for reasoning about causal effects. Here, we take a step in this direction, through the lens of recurrent neural networks trained to perform perceptual decisions. We show that understanding the dynamical system structure that underlies network solutions provides a precise account for the magnitude of behavioral effects due to perturbations. Our framework explains past empirical observations by clarifying the most sensitive features of behavior, and how complex circuits compensate and adapt to perturbations. In the process, we also identify strategies that can improve the interpretability of inactivation experiments. Significance StatementNeuroscientists heavily rely on artificial perturbation of the neural activity to understand the function of brain circuits. Current interpretations of experimental results often follow a simple logic, that the magnitude of a behavioral effect following a perturbation indicates the degree of involvement of the perturbed circuit in the behavior. We model a variety of neural networks with controlled levels of com­plexity, robustness, and plasticity, showing that perturbation experiments could yield counter-intuitive results when networks are complex enough-to allow unperturbed pathways to compensate for the per­turbed neurons-or plastic enough-to allow continued learning from feedback during perturbations. To rein in these complexities we develop a Functional Integrity Index that captures alterations in network computations and predicts disruptions of behavior with the perturbation. 
    more » « less
  2. Abstract During recent decades, our understanding of the brain has advanced dramatically at both the cellular and molecular levels and at the cognitive neurofunctional level; however, a huge gap remains between the microlevel of physiology and the macrolevel of cognition. We propose that computational models based on assemblies of neurons can serve as a blueprint for bridging these two scales. We discuss recently developed computational models of assemblies that have been demonstrated to mediate higher cognitive functions such as the processing of simple sentences, to be realistically realizable by neural activity, and to possess general computational power. 
    more » « less
  3. Abstract We offer three advances to the perceptual crossing simulation studies, which are aimed at challenging methodological individualism in the analysis of social cognition. First, we evolve and systematically test agents in rigorous conditions, identifying a set of 26 “robust circuits” with consistently high and generalizing performance. Next, we transform the sensor from discrete to continuous, facilitating a bifurcation analysis of the dynamics that shows that nonequilibrium dynamics are key to the mutual maintenance of interaction. Finally, we examine agents’ performance with partners whose neural controllers are different from their own and with decoy objects of fixed frequency and amplitude. Nonclonal performance varies and is not predicted by genotypic distance. Frequency-amplitude values that fool the focal agent do not include the agent’s own values. Altogether, our findings accentuate the importance of dynamical and nonclonal analyses for simulated sociality, emphasize the role of dialogue between artificial and human studies, and highlight the contributions of simulation studies to understanding social interactions. 
    more » « less
  4. Computational metacognition represents a cognitive systems perspective on high-order reasoning in integrated artificial systems that seeks to leverage ideas from human metacognition and from metareasoning approaches in artificial intelligence. The key characteristic is to declaratively represent and then monitor traces of cognitive activity in an intelligent system in order to manage the performance of cognition itself. Improvements in cognition then lead to improvements in behavior and thus performance. We illustrate these concepts with an agent implementation in a cognitive architecture called MIDCA and show the value of metacognition in problem-solving. The results illustrate how computational metacognition improves performance by changing cognition through meta-level goal operations and learning. 
    more » « less
  5. null (Ed.)
    Abstract Understanding the mechanisms by which neurons create or suppress connections to enable communication in brain-derived neuronal cultures can inform how learning, cognition and creative behavior emerge. While prior studies have shown that neuronal cultures possess self-organizing criticality properties, we further demonstrate that in vitro brain-derived neuronal cultures exhibit a self-optimization phenomenon. More precisely, we analyze the multiscale neural growth data obtained from label-free quantitative microscopic imaging experiments and reconstruct the in vitro neuronal culture networks (microscale) and neuronal culture cluster networks (mesoscale). We investigate the structure and evolution of neuronal culture networks and neuronal culture cluster networks by estimating the importance of each network node and their information flow. By analyzing the degree-, closeness-, and betweenness-centrality, the node-to-node degree distribution (informing on neuronal interconnection phenomena), the clustering coefficient/transitivity (assessing the “small-world” properties), and the multifractal spectrum, we demonstrate that murine neurons exhibit self-optimizing behavior over time with topological characteristics distinct from existing complex network models. The time-evolving interconnection among murine neurons optimizes the network information flow, network robustness, and self-organization degree. These findings have complex implications for modeling neuronal cultures and potentially on how to design biological inspired artificial intelligence. 
    more » « less