skip to main content

This content will become publicly available on December 27, 2023

Title: High conductivity β-Ga 2 O 3 formed by hot Si ion implantation

This work demonstrates the advantage of carrying out silicon ion (Si+) implantation at high temperatures for forming controlled heavily doped regions in gallium oxide. Room temperature (RT, 25 °C) and high temperature (HT, 600 °C) Si implants were carried out into MBE grown (010) β-Ga2O3films to form ∼350 nm deep Si-doped layers with average concentrations up to ∼1.2 × 1020cm−3. For such high concentrations, the RT sample was too resistive for measurement, but the HT samples had 82.1% Si dopant activation efficiency with a high sheet electron concentration of 3.3 × 1015 cm−2and an excellent mobility of 92.8 cm2/V·s at room temperature. X-ray diffraction measurements indicate that HT implantation prevents the formation of other Ga2O3phases and results in reduced structural defects and lattice damage. These results are highly encouraging for achieving ultra-low resistance heavily doped Ga2O3layers using ion implantation.

Authors:
 ;  ;  ;  ;  ;  ;  
Publication Date:
NSF-PAR ID:
10387868
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
26
Page Range or eLocation-ID:
Article No. 262101
ISSN:
0003-6951
Publisher:
American Institute of Physics
Sponsoring Org:
National Science Foundation
More Like this
  1. In this work, the structural and electrical properties of metalorganic chemical vapor deposited Si-doped β-(Al x Ga 1−x ) 2 O 3 thin films grown on (010) β-Ga 2 O 3 substrates are investigated as a function of Al composition. The room temperature Hall mobility of 101 cm 2 /V s and low temperature peak mobility (T = 65 K) of 1157 cm 2 /V s at carrier concentrations of 6.56 × 10 17 and 2.30 × 10 17  cm −3 are measured from 6% Al composition samples, respectively. The quantitative secondary ion mass spectroscopy (SIMS) characterization reveals a strong dependence of Si and other unintentional impurities, such as C, H, and Cl concentrations in β-(Al x Ga 1−x ) 2 O 3 thin films, with different Al compositions. Higher Al compositions in β-(Al x Ga 1−x ) 2 O 3 result in lower net carrier concentrations due to the reduction of Si incorporation efficiency and the increase of C and H impurity levels that act as compensating acceptors in β-(Al x Ga 1−x ) 2 O 3 films. Lowering the growth chamber pressure reduces Si concentrations in β-(Al x Ga 1−x ) 2 O 3 films due to the increase of Al compositions as evidenced by comprehensive SIMS and Hallmore »characterizations. Due to the increase of lattice mismatch between the epifilm and substrate, higher Al compositions lead to cracking in β-(Al x Ga 1−x ) 2 O 3 films grown on β-Ga 2 O 3 substrates. The (100) cleavage plane is identified as a major cracking plane limiting the growth of high-quality Si-doped (010) β-(Al x Ga 1−x ) 2 O 3 films beyond the critical thicknesses, which leads to highly anisotropic and inhomogeneous behaviors in terms of conductivity.« less
  2. We report the effect of extended duration electron beam exposure on the minority carrier transport properties of 10 MeV proton irradiated (fluence ∼1014cm−2) Si-dopedβ-Ga2O3Schottky rectifiers. The diffusion length (L) of minority carriers is found to decrease with temperature from 330 nm at 21 °C to 289 nm at 120 °C, with an activation energy of ∼26 meV. This energy corresponds to the presence of shallow Si trap-levels. Extended duration electron beam exposure enhancesLfrom 330 nm to 726 nm at room temperature. The rate of increase forLis lower with increased temperature, with an activation energy of 43 meV. Finally, a brief comparison of the effect of electron injection on proton irradiated, alpha-particle irradiated and a reference Si-dopedβ-Ga2O3Schottky rectifiers is presented.

  3. High crystalline quality thick β-Ga2O3drift layers are essential for multi-kV vertical power devices. Low-pressure chemical vapor deposition (LPCVD) is suitable for achieving high growth rates. This paper presents a systematic study of the Schottky barrier diodes fabricated on four different Si-doped homoepitaxial β-Ga2O3thin films grown on Sn-doped (010) and (001) β-Ga2O3substrates by LPCVD with a fast growth rate varying from 13 to 21  μm/h. A higher temperature growth results in the highest reported growth rate to date. Room temperature current density–voltage data for different Schottky diodes are presented, and diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage are studied. Temperature dependence (25–250 °C) of the ideality factor, barrier height, and specific on-resistance is also analyzed from the J–V–T characteristics of the fabricated Schottky diodes.

  4. Ion beam fabrication of metastable polymorphs of Ga2O3, assisted by the controllable accumulation of the disorder in the lattice, is an interesting alternative to conventional deposition techniques. However, the adjustability of the electrical properties in such films is unexplored. In this work, we investigated two strategies for tuning the electron concentration in the ion beam created metastable κ-polymorph: adding silicon donors by ion implantation and adding hydrogen via plasma treatments. Importantly, all heat treatments were limited to ≤600 °C, set by the thermal stability of the ion beam fabricated polymorph. Under these conditions, silicon doping did not change the high resistive state caused by the iron acceptors in the initial wafer and residual defects accumulated upon the implants. Conversely, treating samples in a hydrogen plasma converted the ion beam fabricated κ-polymorph to n-type, with a net donor density in the low 1012 cm−3range and dominating deep traps near 0.6 eV below the conduction band. The mechanism explaining this n-type conductivity change may be due to hydrogen forming shallow donor complexes with gallium vacancies and/or possibly passivating a fraction of the iron acceptors responsible for the high resistivity in the initial wafers.

  5. We present mid-IR spectroscopic characterization of the low-phonon chalcogenide glass, Ga2Ge5S13(GGS) doped with Er3+ions. Under the excitation at ∼800 nm, Er3+:GGS exhibited broad mid-IR emission bands centered at ∼2.7, ∼3.5, and ∼4.5 µm at room temperature. The emission lifetime of the4I9/2level of Er3+ions in GGS glass was found to be millisecond-long at room temperature. The measured fluorescence lifetimes were nearly independent of temperature, indicating negligibly small nonradiative decay rate for the4I9/2state, as can be expected for a low-maximum-phonon energy host. The transition line-strengths, radiative lifetimes, fluorescence branching ratios were calculated by using the Judd-Ofelt method. The peak stimulated emission cross-section of the4I9/24I11/2transition of Er3+ion was determined to be ∼0.10×10−20cm2at room temperature.