skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Projecting Compound Flood Hazard Under Climate Change With Physical Models and Joint Probability Methods
Abstract Accurate delineation of compound flood hazard requires joint simulation of rainfall‐runoff and storm surges within high‐resolution flood models, which may be computationally expensive. There is a need for supplementing physical models with efficient, probabilistic methodologies for compound flood hazard assessment that can be applied under a range of climate and environment conditions. Here we propose an extension to the joint probability optimal sampling method (JPM‐OS), which has been widely used for storm surge assessment, and apply it for rainfall‐surge compound hazard assessment under climate change at the catchment‐scale. We utilize thousands of synthetic tropical cyclones (TCs) and physics‐based models to characterize storm surge and rainfall hazards at the coast. Then we implement a Bayesian quadrature optimization approach (JPM‐OS‐BQ) to select a small number (∼100) of storms, which are simulated within a high‐resolution flood model to characterize the compound flood hazard. We show that the limited JPM‐OS‐BQ simulations can capture historical flood return levels within 0.25 m compared to a high‐fidelity Monte Carlo approach. We find that the combined impact of 2100 sea‐level rise (SLR) and TC climatology changes on flood hazard change in the Cape Fear Estuary, NC will increase the 100‐year flood extent by 27% and increase inundation volume by 62%. Moreover, we show that probabilistic incorporation of SLR in the JPM‐OS‐BQ framework leads to different 100‐year flood maps compared to using a single mean SLR projection. Our framework can be applied to catchments across the United States Atlantic and Gulf coasts under a variety of climate and environment scenarios.  more » « less
Award ID(s):
2103754
PAR ID:
10387916
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
10
Issue:
12
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Compound flooding, characterized by the co‐occurrence of multiple flood mechanisms, is a major threat to coastlines across the globe. Tropical cyclones (TCs) are responsible for many compound floods due to their storm surge and intense rainfall. Previous efforts to quantify compound flood hazard have typically adopted statistical approaches that may be unable to fully capture spatio‐temporal dynamics between rainfall‐runoff and storm surge, which ultimately impact total water levels. In contrast, we pose a physics‐driven approach that utilizes a large set of realistic TC events and a simplified physics‐based rainfall model and simulates each event within a hydrodynamic model framework. We apply our approach to investigate TC flooding in the Cape Fear River, NC. We find TC approach angle, forward speed, and intensity are relevant for compound flood potential, but rainfall rate and time lag between the centroid of rainfall and peak storm tide are the strongest predictors of compounding magnitude. Neglecting rainfall underestimates 100‐year flood depths across 28% of the floodplain, and taking the maximum of each hazard modeled separately still underestimates 16% of the floodplain. We find the main stem of the river is surge‐dominated, upstream portions of small streams and pluvial areas are rainfall dominated, but midstream portions of streams are compounding zones, and areas close to the coastline are surge dominated for lower return periods but compounding zones for high return periods (100 years). Our method links joint rainfall‐surge occurrence to actual flood impacts and demonstrates how compound flooding is distributed across coastal catchments. 
    more » « less
  2. Storm surge flooding caused by tropical cyclones is a devastating threat to coastal regions, and this threat is growing due to sea-level rise (SLR). Therefore, accurate and rapid projection of the storm surge hazard is critical for coastal communities. This study focuses on developing a new framework that can rapidly predict storm surges under SLR scenarios for any random synthetic storms of interest and assign a probability to its likelihood. The framework leverages the Joint Probability Method with Response Surfaces (JPM-RS) for probabilistic hazard characterization, a storm surge machine learning model, and a SLR model. The JPM probabilities are based on historical tropical cyclone track observations. The storm surge machine learning model was trained based on high-fidelity storm surge simulations provided by the U.S. Army Corps of Engineers (USACE). The SLR was considered by adding the product of the normalized nonlinearity, arising from surge-SLR interaction, and the sea-level change from 1992 to the target year, where nonlinearities are based on high-fidelity storm surge simulations and subsequent analysis by USACE. In this study, this framework was applied to the Chesapeake Bay region of the U.S. and used to estimate the SLR-adjusted probabilistic tropical cyclone flood hazard in two areas: One is an urban Virginia site, and the other is a rural Maryland site. This new framework has the potential to aid in reducing future coastal storm risks in coastal communities by providing robust and rapid hazard assessment that accounts for future sea-level rise. 
    more » « less
  3. Abstract Exposure to sea-level rise (SLR) and flooding will make some areas uninhabitable, and the increased demand for housing in safer areas may cause displacement through economic pressures. Anticipating such direct and indirect impacts of SLR is important for equitable adaptation policies. Here we build upon recent advances in flood exposure modeling and social vulnerability assessment to demonstrate a framework for estimating the direct and indirect impacts of SLR on mobility. Using two spatially distributed indicators of vulnerability and exposure, four specific modes of climate mobility are characterized: (1) minimally exposed to SLR (Stable), (2) directly exposed to SLR with capacity to relocate (Migrating), (3) indirectly exposed to SLR through economic pressures (Displaced), and (4) directly exposed to SLR without capacity to relocate (Trapped). We explore these dynamics within Miami-Dade County, USA, a metropolitan region with substantial social inequality and SLR exposure. Social vulnerability is estimated by cluster analysis using 13 social indicators at the census tract scale. Exposure is estimated under increasing SLR using a 1.5 m resolution compound flood hazard model accounting for inundation from high tides and rising groundwater and flooding from extreme precipitation and storm surge. Social vulnerability and exposure are intersected at the scale of residential buildings where exposed population is estimated by dasymetric methods. Under 1 m SLR, 56% of residents in areas of low flood hazard may experience displacement, whereas 26% of the population risks being trapped (19%) in or migrating (7%) from areas of high flood hazard, and concerns of depopulation and fiscal stress increase within at least 9 municipalities where 50% or more of their total population is exposed to flooding. As SLR increases from 1 to 2 m, the dominant flood driver shifts from precipitation to inundation, with population exposed to inundation rising from 2.8% to 54.7%. Understanding shifting geographies of flood risks and the potential for different modes of climate mobility can enable adaptation planning across household-to-regional scales. 
    more » « less
  4. Abstract Future coastal flood hazard at many locations will be impacted by both tropical cyclone (TC) change and relative sea‐level rise (SLR). Despite sea level and TC activity being influenced by common thermodynamic and dynamic climate variables, their future changes are generally considered independently. Here, we investigate correlations between SLR and TC change derived from simulations of 26 Coupled Model Intercomparison Project Phase 6 models. We first explore correlations between SLR and TC activity by inference from two large‐scale factors known to modulate TC activity: potential intensity (PI) and vertical wind shear. Under the high emissions SSP5‐8.5, SLR is strongly correlated with PI change (positively) and vertical wind shear change (negatively) over much of the western North Atlantic and North West Pacific, with global mean surface air temperature (GSAT) modulating the co‐variability. To explore the impact of the joint changes on flood hazard, we conduct climatological–hydrodynamic modeling at five sites along the US East and Gulf Coasts. Positive correlations between SLR and TC change alter flood hazard projections, particularly at Wilmington, Charleston and New Orleans. For example, if positive correlations between SLR and TC changes are ignored in estimating flood hazard at Wilmington, the average projected change to the historical 100 years storm tide event is under‐estimated by 12%. Our results suggest that flood hazard assessments that neglect the joint influence of these factors and that do not reflect the full distribution of GSAT change may not accurately represent future flood hazard. 
    more » « less
  5. Abstract Tropical cyclones (TCs) are drivers of extreme rainfall and surge, but the current and future TC rainfall–surge joint hazard has not been well quantified. Using a physics-based approach to simulate TC rainfall and storm tides, we show drastic increases in the joint hazard from historical to projected future (SSP5–8.5) conditions. The frequency of joint extreme events (exceeding both hazards’ historical 100-year levels) may increase by 7–36-fold in the southern US and 30–195-fold in the Northeast by 2100. This increase in joint hazard is induced by sea-level rise and TC climatology change; the relative contribution of TC climatology change is higher than that of sea-level rise for 96% of the coast, largely due to rainfall increases. Increasing storm intensity and decreasing translation speed are the main TC change factors that cause higher rainfall and storm tides and up to 25% increase in their dependence. 
    more » « less