skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: XANES Studies of Zinc Tin Oxide Films Deposited by Atomic Layer Deposition: Revealing Process-Structure Relationships for Amorphous Oxide Semiconductors
Award ID(s):
1727918
NSF-PAR ID:
10387922
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Physical Chemistry C
ISSN:
1932-7447
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The design of both molecular and non-molecular solid materials with specific properties fundamentally relies on the controlled synthesis of crystals with desired functional groups, bonding motifs, polarity, chirality, and more. To this end, fluoride and oxide-fluoride anions have been utilized as basic building units (BBUs) in the synthesis of noncentrosymmetric racemic materials for their ability to create polar axes that facilitate the breaking of an inversion center as demonstrated in a series of compounds with [MF6]2- anions (M = Ti, Zr, Hf). Targeting an analog with a [TaOF5]2- anion, the phase space of (CuO, Ta2O5)/bpy/HF(aq)/H2O (bpy = 2,2′- bipyridine) was investigated and three new compounds with Cu-bpy cations and Ta-fluoride or Ta-oxyfluoride anions were synthesized: [Cu(bpy)2][TaF6], [Cu (bpy)2][Ta2OF10], and [Cu(bpy)F(H2O)2]2[TaF7]•H2O with the anions [TaF6]-, [Ta2OF10]2-, and [TaF7]2-, respectively. The formation of these anions was found to be a product of both the concentration of hydrofluoric acid in solution and the ratio of metal-oxide starting materials to ligand. This work contributes to the understanding of mixed anion formation in the solid state. 
    more » « less