ABSTRACT Cities impose unique selection pressures on wildlife and generate clines in phenotypic traits along urban–rural gradients. Roads are a widespread feature of human‐dominated landscapes and are known to cause direct wildlife mortality; however, whether they act as a selective force influencing phenotypic trait variation along urban–rural gradients remains unclear. This study tested the hypothesis that roads influence natural selection of coat color in the eastern gray squirrel (Sciurus carolinensis), a species with two distinct coat colors: a gray morph that is common in all areas and a melanic morph more prevalent in urban areas than in rural ones. Vehicular collisions are a significant cause of mortality in eastern gray squirrels, with the melanic morph more visually conspicuous on roads and more easily detected and avoided by drivers than the gray morph. Standardized road cruise surveys along an urbanization gradient in Syracuse, New York, USA, revealed that the prevalence of melanism among living squirrels in Syracuse was negatively related to distance from the city center, whereas there was no urban–rural cline in melanism among road‐killed individuals, with the melanic morph underrepresented among road‐killed squirrels by up to 30% along the urbanization gradient. An examination of the prevalence of each color morph on and off road surfaces in a range‐wide compilation of > 100,000 photographs ofS. carolinensisalso indicated that the melanic morph was underrepresented among road‐killed squirrels imaged. Our study highlights vehicular collisions as an important source of natural selection on phenotypic traits, suggesting a potential role in shaping patterns of urban evolution and contributing to the maintenance of urban–rural clines.
more »
« less
Parallel evolution of urban–rural clines in melanism in a widespread mammal
Abstract Urbanization is the dominant trend of global land use change. The replicated nature of environmental change associated with urbanization should drive parallel evolution, yet insight into the repeatability of evolutionary processes in urban areas has been limited by a lack of multi-city studies. Here we leverage community science data on coat color in > 60,000 eastern gray squirrels ( Sciurus carolinensis ) across 43 North American cities to test for parallel clines in melanism, a genetically based trait associated with thermoregulation and crypsis. We show the prevalence of melanism was positively associated with urbanization as measured by impervious cover. Urban–rural clines in melanism were strongest in the largest cities with extensive forest cover and weakest or absent in cities with warmer winter temperatures, where thermal selection likely limits the prevalence of melanism. Our results suggest that novel traits can evolve in a highly repeatable manner among urban areas, modified by factors intrinsic to individual cities, including their size, land cover, and climate.
more »
« less
- Award ID(s):
- 2018249
- PAR ID:
- 10387950
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 12
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Urban refuge? Squirrel pigmentation clines maintained by strong natural selection beyond city limitsAbstract Urbanization creates heterogeneous selective landscapes that cause the evolution of urban-rural clines in phenotypic traits. Although cities can introduce novel selection pressures, little attention has been paid to the role of selection outside the city in maintaining urban-rural clines. We integrate whole genome sequencing, demographic modeling, and complementary models of selection to test how natural selection in both urban and rural environments shapes the evolution of an urban-rural cline in coat color in eastern gray squirrels (Sciurus carolinensis). Coat color polymorphism in this species, which presents as either gray or melanic, is primarily determined by a 24-bp deletion in the melanocortin-1 receptor gene (Mc1R). Melanic squirrels are more prevalent in urban environments but rare or absent in rural forests. Whole genome sequencing and demographic modeling revealed substantially greater urban-rural divergence at Mc1R than the genomic background, suggesting urban-rural clines in melanism are maintained by selection. We applied three separate approaches leveraging demographic and genomic data to estimate the selection coefficient against Mc1R alleles in each habitat, producing a surprising, yet consistent finding: strong selection against the melanic morph in the rural environment and near neutrality in the city. Our findings demonstrate that selection outside the city can be sufficient to maintain urban-rural clines, and urban environments can maintain genetic diversity that would otherwise be lost in rural landscapes. This study provides a rare opportunity to unravel both the spatial dynamics and the selective pressures shaping trait variation in a widespread vertebrate species, highlighting the complex and sometimes protective role of urban landscapes in evolutionary processes.more » « less
-
Abstract Urbanization introduces new and alters the existing hydrological processes. Projecting the direction and magnitude of change of evapotranspiration (ET), often a large existing process, in humid subtropical climates is difficult due to the lack of land‐cover specific estimates of ET. This research aims to improve our fundamental understanding of ET in urban areas by focusing on ET specific to land‐cover classes of the National Land Cover Database (NLCD). Using multiple physically based models along with ET from reference watersheds, this study estimates ET—within the Atlanta, GA, USA region—for NLCD classes. ET also is estimated for urban watersheds—both in the Atlanta region and in areas with humid subtropical climate types—for which published ET estimates exist. There are major differences in land cover among the four developed classes: high‐intensity developed land is 92% impervious surfaces, while open‐space developed land—the least intensively developed land—is only 8% impervious surfaces. Consequently, open‐space developed land has an ET total that is over four times that of high‐intensity developed land. Due to a high percentage of impervious cover and substantial evaporation of water from impervious surfaces throughout the year, there is little intra‐annual variation in ET for the high‐intensity developed class. The land‐cover ET totals aggregate to reliable estimates for urban watersheds. The largest source of uncertainty for ET estimates in urban areas is likely the evaporation magnitude associated with impervious surfaces; therefore, more work is needed in determining those magnitudes for humid subtropical climates.more » « less
-
Urbanization tends to increase local lightning frequency (i.e. the ‘lightning enhancement’ effect). Despite many urban areas showing lightning enhancement, the prevalence of these effects is unknown and the drivers underlying these patterns are poorly quantified. We conducted a global assessment of cloud-to-ground lightning flashes (lightning strikes) across 349 cities to evaluate how the likelihood and magnitude of lightning enhancement vary with geography, climate, air pollution, topography and urban development. The likelihood of exhibiting lightning enhancement increased with higher temperature and precipitation in urban areas relative to their natural surroundings (i.e. urban heat islands and elevated urban precipitation), higher regional lightning strike frequency, greater distance to water bodies and lower elevations. Lightning enhancement was stronger in cities with conspicuous heat islands and elevated urban precipitation effects, higher lightning strike frequency, larger urban areas and lower latitudes. The particularly strong effects of elevated urban temperature and precipitation indicate that these are dominant mechanisms by which cities cause local lightning enhancement.more » « less
-
1) Urbanization may lead to changes in local richness (alpha diversity) or in community composition (beta diversity), although the direction of change can be challenging to predict. For instance, introduced species may offset the loss of native specialist taxa, leading to no change in alpha diversity in urban areas, but decreased beta diversity (i.e., more homogenous community structure). Alternatively, because urban areas can have low connectivity and high environmental heterogeneity between sites, they may support distinct communities from one another over small geographic distances. 2) Wetlands and ponds provide critical ecosystem services and support diverse communities, making them important systems in which to understand consequences of urbanization. To determine how urban development shapes pond community structure, we surveyed 68 ponds around Madison, Wisconsin, USA, which were classified as urban, greenspace, or rural based on surrounding land use. We evaluated the influence of local abiotic factors, presence of nonnative fishes, and landscape characteristics on alpha diversity of aquatic plants, macroinvertebrates, and vertebrates. We also analyzed whether surrounding land cover was associated with changes in community composition and/or the presence of specific taxa. 3) We found a 23% decrease in mean richness (alpha diversity) from rural to urban pond sites, and a 15% decrease in richness from rural to urban greenspace pond sites. Among landscape factors, observed pond richness was negatively correlated with adjacent developed land and mowed lawns, as well as greater distances to other waterbodies. Among pond level factors, habitat complexity was associated with increased richness, while the presence of invasive fish was associated with decreased richness. 4) Beta diversity was relatively high for all ponds due to turnover in composition between sites. Urban ponds supported more introduced species, lacked a subset of native species found in rural ponds, and had slightly higher beta diversity than greenspace and rural ponds. 5) Synthesis and Applications: Integrating ponds into connected greenspaces comprised of native vegetation (rather than mowed grass), preventing nonnative fish introductions, and promoting habitat complexity may mitigate negative effects of urbanization on aquatic richness. The high beta diversity of distinct pond communities emphasizes their importance to biodiversity support in urban environments, despite being small in size and rarely incorporated into urban conservation planning.more » « less
An official website of the United States government

