skip to main content

Title: The Helium and Carbon Isotope Characteristics of the Andean Convergent Margin
Subduction zones represent the interface between Earth’s interior (crust and mantle) and exterior (atmosphere and oceans), where carbon and other volatile elements are actively cycled between Earth reservoirs by plate tectonics. Helium is a sensitive tracer of volatile sources and can be used to deconvolute mantle and crustal sources in arcs; however it is not thought to be recycled into the mantle by subduction processes. In contrast, carbon is readily recycled, mostly in the form of carbon-rich sediments, and can thus be used to understand volatile delivery via subduction. Further, carbon is chemically-reactive and isotope fractionation can be used to determine the main processes controlling volatile movements within arc systems. Here, we report helium isotope and abundance data for 42 deeply-sourced fluid and gas samples from the Central Volcanic Zone (CVZ) and Southern Volcanic Zone (SVZ) of the Andean Convergent Margin (ACM). Data are used to assess the influence of subduction parameters (e.g., crustal thickness, subduction inputs, and convergence rate) on the composition of volatiles in surface volcanic fluid and gas emissions. He isotopes from the CVZ backarc range from 0.1 to 2.6 R A ( n = 23), with the highest values in the Puna and the lowest in more » the Sub-Andean foreland fold-and-thrust belt. Atmosphere-corrected He isotopes from the SVZ range from 0.7 to 5.0 R A ( n = 19). Taken together, these data reveal a clear southeastward increase in 3 He/ 4 He, with the highest values (in the SVZ) falling below the nominal range associated with pure upper mantle helium (8 ± 1 R A ), approaching the mean He isotope value for arc gases of (5.4 ± 1.9 R A ). Notably, the lowest values are found in the CVZ, suggesting more significant crustal inputs (i.e., assimilation of 4 He) to the helium budget. The crustal thickness in the CVZ (up to 70 km) is significantly larger than in the SVZ, where it is just ∼40 km. We suggest that crustal thickness exerts a primary control on the extent of fluid-crust interaction, as helium and other volatiles rise through the upper plate in the ACM. We also report carbon isotopes from ( n = 11) sites in the CVZ, where δ 13 C varies between −15.3‰ and −1.2‰ [vs. Vienna Pee Dee Belemnite (VPDB)] and CO 2 / 3 He values that vary by over two orders of magnitude (6.9 × 10 8 –1.7 × 10 11 ). In the SVZ, carbon isotope ratios are also reported from ( n = 13) sites and vary between −17.2‰ and −4.1‰. CO 2 / 3 He values vary by over four orders of magnitude (4.7 × 10 7 –1.7 × 10 12 ). Low δ 13 C and CO 2 / 3 He values are consistent with CO 2 removal (e.g., calcite precipitation and gas dissolution) in shallow hydrothermal systems. Carbon isotope fractionation modeling suggests that calcite precipitation occurs at temperatures coincident with the upper temperature limit for life (122°C), suggesting that biology may play a role in C-He systematics of arc-related volcanic fluid and gas emissions. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; « less
Award ID(s):
2121637
Publication Date:
NSF-PAR ID:
10387981
Journal Name:
Frontiers in Earth Science
Volume:
10
ISSN:
2296-6463
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In 2017, fluid and gas samples were collected across the Costa Rican Arc. He and Ne isotopes, C isotopes as well as total organic and inorganic carbon concentrations were measured. The samples (n = 24) from 2017 are accompanied by (n = 17) samples collected in 2008, 2010 and 2012. He-isotopes ranged from arc-like (6.8 RA) to crustal (0.5 RA). Measured dissolved inorganic carbon (DIC) δ13CVPDBvalues varied from 3.55 to −21.57‰, with dissolved organic carbon (DOC) following the trends of DIC. Gas phase CO2only occurs within ~20 km of the arc; δ13CVPDBvalues varied from −0.84 to −5.23‰. Onsite, pH, conductivity, temperature and dissolved oxygen (DO) were measured; pH ranged from 0.9–10.0, conductivity from 200–91,900 μS/cm, temperatures from 23–89 °C and DO from 2–84%. Data were used to develop a model which suggests that ~91 ± 4.0% of carbon released from the slab/mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition with an additional 3.3 ± 1.3% incorporated into autotrophic biomass.

  2. Abstract

    We present a quantitative assessment of the input and output of CO2and N2along the Hikurangi margin based on the chemical and stable isotope composition of sediments and basalts (from IODP 375), previously accreted metasedimentary rocks, and volcanic/hydrothermal gases (together with noble gas data for the latter). We compare these results with 3‐D thermo‐petrologic models for four lithologic structures, representing different plateau inputs. The model results indicate that 59%–85% of initially subducted C and 5%–12% of N is lost from the slab during metamorphism, with both volatiles being dominantly sourced from altered oceanic crust with some contribution from subducted sediment at the forearc‐arc transition (75–90 km depth). The δ13CVPDBand CO2/3He values for the arc gases range from −8.3 to −1.4‰ and 2 × 109to 2.7 × 1011, indicating contributions from slab carbonate, organic C, and mantle C of 67%, 30%, and 3%, respectively. The δ15Nairand N2/36Ar values of arc gases are −1.0 to +2.3‰ and 1.54 × 104to 1.9 × 105, indicating slab and mantle contributions of 74% and 26%. The δ13C signature of gases requires addition of organic C by tectonic erosion and/or shallow crustal assimilation. These calculations yield whole‐margin fluxes of 5.4–7.0 Tg/yr for CO2and 0.0022–0.0057 Tg/yr for N2,corresponding to ∼2.2% and 1%–30% of the global CO2and N2flux frommore »subaerial volcanoes worldwide (assuming no loss during transit). This unique assessment of volatile cycling could prove useful in refining regional and global estimates of volatile recycling efficiency.

    « less
  3. Spring waters from across the Costa Rica margin were analyzed for their Li and He isotope compositions to determine the utility of Li isotopes as a tracer of volatile sources in subduction zones. Li isotope ratios systematically decrease with increasing depth to the subducting slab: averaging +15.0‰ ± 9.2‰ in the outer forearc (<40 km to the slab), +9.3‰ ± 4.3‰ in the forearc (40–80 km to the slab), and +5.8‰ ± 2.8‰ in the arc (>80 km to the slab). In contrast, air-corrected 3He/4He values (reported relative to the ratio in air, RA) range from 0.4 to 7.5 RA and increase from predominantly crustal values near the trench to mantle values in the arc. Together, these data support progressive devolatilization of the subducting plate with slab-derived Li components sourced from shallowly expelled pore fluids in the outer forearc, sedimentary and/or altered oceanic crust contributing to the forearc, and limited slab input beneath the arc.
  4. Geologic processes at convergent plate margins control geochemical cycling, seismicity, and deep biosphere activity in subduction zones and suprasubduction zone lithosphere. International Ocean Discovery Program (IODP) Expedition 366 was designed to address the nature of these processes in the shallow to intermediate depth of the Mariana subduction channel. Although no technology is available to permit direct sampling of the subduction channel of an intraoceanic convergent margin at depths up to 18 km, the Mariana forearc region (between the trench and the active volcanic arc) provides a means to access this zone. Active conduits, resulting from fractures in the forearc, are prompted by along- and across-strike extension that allows slab-derived fluids and materials to ascend to the seafloor along associated faults, resulting in the formation of serpentinite mud volcanoes. Serpentinite mud volcanoes of the Mariana forearc are the largest mud volcanoes on Earth. Their positions adjacent to or atop fault scarps on the forearc are likely related to the regional extension and vertical tectonic deformation in the forearc. Serpentinite mudflows at these volcanoes include serpentinized forearc mantle clasts, crustal and subducted Pacific plate materials, a matrix of serpentinite muds, and deep-sourced formation fluid. Mud volcanism on the Mariana forearc occurs withinmore »100 km of the trench, representing a range of depths and temperatures to the downgoing plate and the subduction channel. These processes have likely been active for tens of millions of years at this site and for billions of years on Earth. At least 10 active serpentinite mud volcanoes have been located in the Mariana forearc. Two of these mud volcanoes are Conical and South Chamorro Seamounts, which are the furthest from the Mariana Trench at 86 and 78 km, respectively. Both seamounts were cored during Ocean Drilling Program (ODP) Legs 125 and 195, respectively. Data from these two seamounts represent deeper, warmer examples of the continuum of slab-derived materials as the Pacific plate subducts, providing a snapshot of how slab subduction affects fluid release, the composition of ascending fluids, mantle hydration, and the metamorphic paragenesis of subducted oceanic lithosphere. Data from the study of these two mud volcanoes constrain the pressure, temperature, and composition of fluids and materials within the subduction channel at depths of about 18 to 19 km. Understanding such processes is necessary for elucidating factors that control seismicity in convergent margins, tectonic and magma genesis processes in the forearc and volcanic arc, fluid and material fluxes, and the nature and variability of environmental conditions that impact subseafloor microbial communities. Expedition 366 centered on data collection from cores recovered from three serpentinite mud volcanoes that define a continuum of subduction-channel processes defined by the two previously cored serpentinite mud volcanoes and the trench. Three serpentinite mud volcanoes (Yinazao, Fantangisña, and Asùt Tesoro) were chosen at distances 55 to 72 km from the Mariana Trench. Cores were recovered from active sites of eruption on their summit regions and on the flanks where ancient flows are overlain by more recent ones. Recovered materials show the effects of dynamic processes that are active at these sites, bringing a range of materials to the seafloor, including materials from the lithosphere of the Pacific plate and from subducted seamounts (including corals). Most of the recovered material consists of serpentinite mud containing lithic clasts, which are derived from the underlying forearc crust and mantle and the subducting Pacific plate. Cores from each of the three seamounts drilled during Expedition 366, as well as those from Legs 125 and 195, include material from the underlying Pacific plate. A thin cover of pelagic sediment was recovered at many Expedition 366 sites, and at Site U1498 we cored through serpentinite flows to the underlying pelagic sediment and volcanic ash deposits. Recovered serpentinites are largely uniform in major element composition, with serpentinized ultramafic rocks and serpentinite muds spanning a limited range in SiO2 , MgO, and Fe2 O3 compositions. However, variation in trace element composition reflects pore fluid composition, which differs as a function of the temperature and pressure of the underlying subduction channel. Dissolved gases H2 , CH4 , and C2 H6 are highest at the site furthest from the trench, which also has the most active fluid discharge of the Expedition 366 serpentinite mud volcanoes. These dissolved gases and their active discharge from depth likely support active microbial communities, which were the focus of in-depth subsampling and preservation for shore-based analytical and culturing procedures. The effects of fluid discharge were also registered in the porosity and GRA density data indicated by higher than expected values at some of the summit sites. These higher values are consistent with overpressured fluids that minimize compaction of serpentinite mud deposits. In contrast, flank sites have significantly greater decreases in porosity with depth, suggesting that processes in addition to compaction are required to achieve the observed data. Thermal measurements reveal higher heat flow values on the flanks (~31 mW/m2) than on the summits (~17 mW/m2) of the seamounts. The new 2G Enterprises superconducting rock magnetometer (liquid helium free) revealed relatively high values of both magnetization and bulk magnetic susceptibility of discrete samples related to ultramafic rocks, particularly in dunite. Magnetite, a product of serpentinization, and authigenic carbonates were observed in the mudflow matrix materials. In addition to coring operations, Expedition 366 focused on the deployment and remediation of borehole casings for future observatories and set the framework for in situ experimentation. Borehole work commenced at South Chamorro Seamount, where the original-style CORK was partially removed. Work then continued at each of the three summit sites following coring operations. Cased boreholes with at least three joints of screened casing were deployed, and a plug of cement was placed at the bottom of each hole. Water samples were collected from two of the three boreholes, revealing significant inputs of formation fluids. This suggests that each of the boreholes tapped a hydrologic zone, making these boreholes suitable for experimentation with the future deployment of a CORK-lite. An active education and outreach program connected with many classrooms on shore and with the general public through social media.« less
  5. Geologic processes at convergent plate margins control geochemical cycling, seismicity, and deep biosphere activity in subduction zones and suprasubduction zone lithosphere. International Ocean Discovery Program Expedition 366 was designed to address the nature of these processes in the shallow to intermediate depth of the Mariana subduction channel. Although no technology is available to permit direct sampling of the subduction channel of an intraoceanic convergent margin at depths up to 19 km, the Mariana forearc region (between the trench and the active volcanic arc) provides a means to access materials from this zone. Active conduits, resulting from fractures in the forearc, are prompted by along- and across-strike extension that allows slab-derived fluids and materials to ascend to the seafloor along associated faults, resulting in the formation of serpentinite mud volcanoes. Serpentinite mud volcanoes of the Mariana forearc are the largest mud volcanoes on Earth. Their positions adjacent to or atop fault scarps on the forearc are likely related to the regional extension and vertical tectonic deformation in the forearc. Serpentinite mudflows at these volcanoes include serpentinized forearc mantle clasts, crustal and subducted Pacific plate materials, a matrix of serpentinite muds, and deep-sourced formation fluid. Mud volcanism on the Mariana forearc occursmore »within 100 km of the trench, representing a range of depths and temperatures to the downgoing plate and the subduction channel. These processes have likely been active for tens of millions of years at the Mariana forearc and for billions of years on Earth. At least 19 active serpentinite mud volcanoes have been located in the Mariana forearc. Two of these mud volcanoes are Conical and South Chamorro Seamounts, which are the farthest from the Mariana Trench at 86 and 78 km, respectively. Both seamounts were cored during Ocean Drilling Program Legs 125 and 195, respectively. Data from these two seamounts represent deeper, warmer examples of the continuum of slab-derived materials as the Pacific plate subducts, providing a snapshot of how slab subduction affects fluid release, the composition of ascending fluids, mantle hydration, and the metamorphic paragenesis of subducted oceanic lithosphere. Data from the study of these two mud volcanoes constrain the pressure, temperature, and composition of fluids and materials within the subduction channel at depths of up to 19 km. Understanding such processes is necessary for elucidating factors that control seismicity in convergent margins, tectonic and magma genesis processes in the volcanic arc and backarc areas, fluid and material fluxes, and the nature and variability of environmental conditions that impact subseafloor microbial communities. Expedition 366 focused on data collection from cores recovered from three serpentinite mud volcanoes that define a continuum of subduction-channel processes to compare with results from drilling at the two previously cored serpentinite mud volcanoes and with previously collected gravity, piston, and remotely operated vehicle push cores across the trench-proximal forearc. Three serpentinite mud volcanoes (Yinazao, Fantangisña, and Asùt Tesoro) were chosen at distances 55 to 72 km from the Mariana Trench. Cores were recovered from active sites of eruption on their summit regions and on the flanks where ancient flows are overlain by more recent ones. Recovered materials show the effects of dynamic processes that are active at these sites, bringing a range of materials to the seafloor, including materials from the crust of the Pacific plate, most notably subducted seamounts (even corals). Most of the recovered material consists of serpentinite mud containing lithic clasts, which are derived from the underlying forearc crust and mantle and the subducting Pacific plate. A thin cover of pelagic sediment was recovered at many Expedition 366 sites, and at Site U1498 we cored through distal serpentinite mudflows and into the underlying pelagic sediment and volcanic ash deposits. Recovered serpentinized ultramafic rocks and mudflow matrix materials are largely uniform in major element composition, spanning a limited range in SiO2, MgO, and Fe2O3 compositions. However, variation in trace element composition reflects interstitial water composition, which differs as a function of the temperature and pressure of the underlying subduction channel. Dissolved gases H2, CH4, and C2H6 are highest at the site farthest from the trench, which also has the most active fluid discharge of the Expedition 366 serpentinite mud volcanoes. These dissolved gases and their active discharge from depth likely support active microbial communities, which were the focus of in-depth subsampling and preservation for shore-based analytical and culturing procedures. The effects of fluid discharge were also registered in the porosity and gamma ray attenuation density data indicated by higher than expected values at some of the summit sites. These higher values are consistent with overpressured fluids that slow compaction of serpentinite mud deposits. In contrast, flank sites have significantly greater decreases in porosity with depth, suggesting that processes in addition to compaction are required to achieve the observed data. Thermal measurements reveal higher heat flow values on the flanks (~31 mW/m2) than on the summits (~17 mW/m2) of the seamounts. The new 2G Enterprises superconducting rock magnetometer (liquid helium free) revealed relatively high values of both magnetization and bulk magnetic susceptibility of discrete samples related to ultramafic rocks, particularly dunite. Magnetite, a product of serpentinization, and authigenic carbonates were observed in the mudflow matrix materials. In addition to coring operations, Expedition 366 focused on the deployment and remediation of borehole casings for future observatories and set the framework for in situ experimentation. Borehole work commenced at South Chamorro Seamount, where the original-style CORK was partially removed. Work then continued at each of the three summit sites following coring operations. Cased boreholes with at least three joints of screened casing were deployed, and a plug of cement was placed at the bottom of each hole. Water samples were collected from two of the three boreholes, revealing significant inputs of formation fluids. This suggests that each of the boreholes tapped a hydrologic zone, making these boreholes suitable for experimentation with the future deployment of a CORK-Lite.« less