Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Nitrogen (N) dominates Earth's atmosphere (78% N2) but occurs in trace abundances in silicate minerals, making it a sensitive tracer of recycled surface materials into the mantle. The mechanisms controlling N transfer between terrestrial reservoirs remain uncertain because low N abundances in mineral‐hosted fluid inclusions (FIs) are difficult to measure. Using new techniques, we analyzed N and He isotope compositions and abundances in olivine‐ and pyroxene‐hosted FIs from arc volcanoes in Southern Chile, Cascadia, Central America, and the Southern Marianas. These measurements enable an estimate of the global flux of N outgassing from arcs (4.0 × 1010 mol/yr). This suggests that Earth is currently in a state of net N ingassing, with roughly half of subducted N returned to the mantle. Additionally, the N outgassing flux of individual arcs correlates with the thickness of subducting pelagic sediment, suggesting that N cycling in the modern solid Earth is largely controlled by sediment subduction.more » « less
- 
            Abstract A challenge in monitoring long‐dormant volcanoes is to discover early signs of reawakening. Mineral springs on Taranaki volcano (2,518 m, New Zealand) have elevated carbonate concentrations, δ13CDIC ∼ −5‰ (VPDB) and He isotopes from 5.13 to 5.92 RA, indicating a magmatic volatile source. Stable isotopes demonstrate water recharge occurs near the volcano's summit. Volatile anions and silica are low in a cold (5oC) flank spring at 1,000 m a.s.l., yet elevated in warm springs (25–32oC) associated with travertine deposits at 250–300 m, suggesting a weak hydrothermal component along the flow path. Tritium dating of the cold spring water yields a mean residence time of 7.8 years. This short residence time and magmatic volatile signatures suggest magmatic CO2persistently flushes Taranaki's upper edifice. Cold spring geochemistry thus reveals volcanic activity at this dormant volcano that otherwise lacks obvious geophysical signs of unrest.more » « less
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Awan, Rizwan Sarwar (Ed.)Subduction of the Cocos and Nazca oceanic plates beneath the Caribbean plate drives the upward movement of deep fluids enriched in carbon, nitrogen, sulfur, and iron along the Central American Volcanic Arc (CAVA). These compounds fuel diverse subsurface microbial communities that in turn alter the distribution, redox state, and isotopic composition of these compounds. Microbial community structure and functions vary according to deep fluid delivery across the arc, but less is known about how microbial communities differ along the axis of a convergent margin as geological features (e.g., extent of volcanism and subduction geometry) shift. Here, we investigate changes in bacterial 16S rRNA gene amplicons and geochemical analysis of deeply-sourced seeps along the southern CAVA, where subduction of the Cocos Ridge alters the geological setting. We find shifts in community composition along the convergent margin, with communities in similar geological settings clustering together independently of the proximity of sample sites. Microbial community composition correlates with geological variables such as host rock type, maturity of hydrothermal fluid and slab depth along different segments of the CAVA. This reveals tight coupling between deep Earth processes and subsurface microbial activity, controlling community distribution, structure and composition along a convergent margin.more » « lessFree, publicly-accessible full text available November 13, 2025
- 
            At convergent margins, plates collide producing a subduction process. When an oceanic plate collides with a continental plate, the denser (i.e., oceanic) plate subducts beneath the less dense (continental) plate. This process results in the transportation of carbon and other volatiles into Earth’s deep interior and is counterbalanced by volcanic outgassing. Sampling deeply-sourced seeps and fumaroles throughout a convergent margin allows us to assess the processes that control the inventory of volatiles and their interaction with the deep subsurface microbial communities. The Andean Convergent Margin is volcanically active in four distinct zones: the Northern Volcanic Zone, the Central Volcanic Zone, the Southern Volcanic Zone and the Austral Volcanic Zone, which are each characterised by significantly different subduction parameters like crustal thickness, age of subduction and subduction angle. These differences can change subduction dynamics along the convergent margin, possibly influencing the recycling efficiency of carbon and volatiles and its interaction with the subsurface microbial communities. We carried out a scientific expedition, sampling along a ~800 km convergent margin segment of the Andean Convergent Margin in the Central Volcanic Zone of northern Chile, between 17 °S and 24 °S, sampling fluids, gases and sediments, in an effort to understand interactions between microbiology, deeply-sourced fluids, the crust, and tectonic parameters. We collected samples from 38 different sites, representing a wide diversity of seep types in different geologic contexts. Here we report the field protocols and the descriptions of the sites and samples collected.more » « less
- 
            Yin, Yanbin (Ed.)Microbial communities in terrestrial geothermal systems often contain chemolithoautotrophs with well-characterized distributions and metabolic capabilities. However, the extent to which organic matter produced by these chemolithoautotrophs supports heterotrophs remains largely unknown. Here we compared the abundance and activity of peptidases and carbohydrate active enzymes (CAZymes) that are predicted to be extracellular identified in metagenomic assemblies from 63 springs in the Central American and the Andean convergent margin (Argentinian backarc of the Central Volcanic Zone), as well as the plume-influenced spreading center in Iceland. All assemblies contain two orders of magnitude more peptidases than CAZymes, suggesting that the microorganisms more often use proteins for their carbon and/or nitrogen acquisition instead of complex sugars. The CAZy families in highest abundance are GH23 and CBM50, and the most abundant peptidase families are M23 and C26, all four of which degrade peptidoglycan found in bacterial cells. This implies that the heterotrophic community relies on autochthonous dead cell biomass, rather than allochthonous plant matter, for organic material. Enzymes involved in the degradation of cyanobacterial- and algal-derived compounds are in lower abundance at every site, with volcanic sites having more enzymes degrading cyanobacterial compounds and non-volcanic sites having more enzymes degrading algal compounds. Activity assays showed that many of these enzyme classes are active in these samples. High temperature sites (> 80°C) had similar extracellular carbon-degrading enzymes regardless of their province, suggesting a less well-developed population of secondary consumers at these sites, possibly connected with the limited extent of the subsurface biosphere in these high temperature sites. We conclude that in < 80°C springs, chemolithoautotrophic production supports heterotrophs capable of degrading a wide range of organic compounds that do not vary by geological province, even though the taxonomic and respiratory repertoire of chemolithoautotrophs and heterotrophs differ greatly across these regions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
