skip to main content

Title: Combining Radiotherapy (RT) and Photodynamic Therapy (PDT): Clinical Studies on Conventional RT-PDT Approaches and Novel Nanoparticle-Based RT-PDT Approaches under Preclinical Evaluation
Authors:
;
Award ID(s):
1803968
Publication Date:
NSF-PAR ID:
10388016
Journal Name:
ACS Biomaterials Science & Engineering
Volume:
8
Issue:
9
Page Range or eLocation-ID:
3644 to 3658
ISSN:
2373-9878
Sponsoring Org:
National Science Foundation
More Like this
  1. The title compound, bis(1,2-diphenyl-2-sulfanylideneethanethiolato-κ 2 S , S ′)(1,3,5-triaza-7-phosphaadamantane-κ P )cobalt(II) dichloromethane hemisolvate, [Co(pdt) 2 (PTA)]·0.5C 2 H 4 Cl 2 or [Co(C 14 H 10 S 2 ) 2 (C 6 H 12 N 3 P)]·0.5C 2 H 4 Cl 2 , contains two phenyldithiolene (pdt) ligands and a 1,3,5-triaza-7-phosphaadamantane (PTA) ligand bound to cobalt with the solvent 1,2-dichloroethane molecule located on an inversion center. The cobalt core exhibits an approximately square-pyramidal geometry with partially reduced thienyl radical monoanionic ligands. The supramolecular network is consolidated by hydrogen-bonding interactions primarily with nitrogen, sulfur and chlorine atoms, as well as parallel displaced π-stacking of the aryl rings. The UV–vis, IR, and CV data are also consistent with monoanionic dithiolene ligands and an overall Co II oxidation state.
  2. Abstract

    Progress is needed before explicit photodynamic therapy (PDT) dosimetry can treat peritoneal carcinomatosis and yet spare all healthy tissue. A report by Cengel et al. in this issue ofPhotochemistry & Photobiologyon tissue evaluation in a canine model may bring that goal a step closer and may even bedogma‐changing.