Ferroelectric hafnium-zirconium oxide (HZO) is an excellent candidate for low-power non-volatile memory applications due to its demonstrated ferroelectricity at the nanoscale and compatibility with silicon-based technologies. The interface of HZO in contact with its electrode, typically TiN in a metal–ferroelectric–metal (MFM) capacitor configuration, is of particular interest because factors, such as volume confinement, impurity concentration, interfacial layers, thermal expansion mismatch, and defect trapping, are believed to play a crucial role in the ferroelectric performance of HZO-based devices. Processing variables, such as precursor type, oxygen source, dose duration, and deposition temperature, are known to strongly affect the quality of the oxide–metal interface. However, not many studies have focused on the effect of breaking or maintaining vacuum during MFM deposition. In this study, sequential, no-atmosphere processing (SNAP) is employed to avoid atmospheric exposure, where electrode TiN and ferroelectric HZO are deposited sequentially in the atomic layer deposition chamber without breaking vacuum. The effect of breaking vacuum during the sequential deposition steps is elucidated by fabricating and characterizing MFM capacitors with and without intentional vacuum breaks prior to the deposition of the HZO and top TiN. Using x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (ToF-SIMS), we reveal that breaking vacuum after bottom TiN electrode deposition leads to interfacial oxidation and increased carbon contamination, which preferentially stabilizes the non-ferroelectric tetragonal phase and lead to diminished remanent polarization. Avoiding carbon impurities and interfacial TiOx at the HZO and TiN interface using SNAP leads to heightened remanent polarization, reduced leakage current density, and elimination of the wake-up effect. Our work highlights the effect of vacuum breaking on the processing-structure-properties of HZO-based capacitors, revealing that maintaining vacuum can significantly improve ferroelectric properties.
more »
« less
The influence of crystallographic texture on structural and electrical properties in ferroelectric Hf0.5Zr0.5O2
Ferroelectric (Hf,Zr)O2 thin films have attracted increased interest from the ferroelectrics community and the semiconductor industry due to their ability to exhibit ferroelectricity at nanoscale dimensions. The properties and performance of the ferroelectric (Hf,Zr)O2 films generally depend on various factors such as surface energy (e.g., through grain size or thickness), defects (e.g., through dopants, oxygen vacancies, or impurities), electrodes, interface quality, and preferred crystallographic orientation (also known as crystallographic texture or simply texture) of grains and/or domains. Although some factors affecting properties and performance have been studied extensively, the effects of texture on the material properties are still not understood. Here, the influence of texture of the bottom electrode and Hf0.5Zr0.5O2 (HZO) films on properties and performance is reported. The uniqueness of this work is the use of a consistent deposition process known as Sequential, No-Atmosphere Processing (SNAP) that produces films with different preferred orientations yet minimal other differences. The results shown in this study provide both new insight on the importance of the bottom electrode texture and new fundamental processing-structure–property relationships for the HZO films.
more »
« less
- PAR ID:
- 10388087
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 132
- Issue:
- 24
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hf 0.5 Zr 0.5 O 2 (HZO) thin films are promising candidates for non-volatile memory and other related applications due to their demonstrated ferroelectricity at the nanoscale and compatibility with Si processing. However, one reason that HZO has not been fully scaled into industrial applications is due to its deleterious wake-up and fatigue behavior which leads to an inconsistent remanent polarization during cycling. In this study, we explore an interfacial engineering strategy in which we insert 1 nm Al 2 O 3 interlayers at either the top or bottom HZO/TiN interface of sequentially deposited metal-ferroelectric-metal capacitors. By inserting an interfacial layer while limiting exposure to the ambient environment, we successfully introduce a protective passivating layer of Al 2 O 3 that provides excess oxygen to mitigate vacancy formation at the interface. We report that TiN/HZO/TiN capacitors with a 1 nm Al 2 O 3 at the top interface demonstrate a higher remanent polarization (2P r ∼ 42 μ C cm −2 ) and endurance limit beyond 10 8 cycles at a cycling field amplitude of 3.5 MV cm −1 . We use time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, and grazing incidence x-ray diffraction to elucidate the origin of enhanced endurance and leakage properties in capacitors with an inserted 1 nm Al 2 O 3 layer. We demonstrate that the use of Al 2 O 3 as a passivating dielectric, coupled with sequential ALD fabrication, is an effective means of interfacial engineering and enhances the performance of ferroelectric HZO devices.more » « less
-
Abstract The presence of the top electrode on hafnium oxide‐based thin films during processing has been shown to drive an increase in the amount of metastable ferroelectric orthorhombic phase and polarization performance. This “Clamping Effect,” also referred to as the Capping or Confinement Effect, is attributed to the mechanical stress and confinement from the top electrode layer. However, other contributions to orthorhombic phase stabilization have been experimentally reported, which may also be affected by the presence of a top electrode. In this study, it is shown that the presence of the top electrode during thermal processing results in larger tensile biaxial stress magnitudes and concomitant increases in ferroelectric phase fraction and polarization response, whereas film chemistry, microstructure, and crystallization temperature are not affected. Through etching experiments and measurement of stress evolution for each processing step, it is shown that the top electrode locally inhibits out‐of‐plane expansion in the HZO during crystallization, which prevents equilibrium monoclinic phase formation and stabilizes the orthorhombic phase. This study provides a mechanistic understanding of the clamping effect and orthorhombic phase formation in ferroelectric hafnium oxide‐based thin films, which informs the future design of these materials to maximize ferroelectric phase purity and corresponding polarization behavior.more » « less
-
Abstract Ferroelectric hafnium zirconium oxide (HZO) holds promise for nextgeneration memory and transistors due to its superior scalability and seamless integration with complementary metal‐oxide‐semiconductor processing. A major challenge in developing this emerging ferroelectric material is the metastable nature of the non‐centrosymmetric polar phase responsible for ferroelectricity, resulting in a coexistence of both polar and non‐polar phases with uneven grain sizes and random orientations. Due to the structural similarity between the multiple phases and the nanoscale dimensions of the thin film devices, accurate measurement of phase‐specific information remains challenging. Here, the application of 4D scanning transmission electron microscopy is demonstrated with automated electron diffraction pattern indexing to analyze multiphase polycrystalline HZO thin films, enabling the characterization of crystallographic phase and orientation across large working areas on the order of hundreds of nanometers. This approach offers a powerful characterization framework to produce a quantitative and statistically robust analysis of the intricate structure of HZO films by uncovering phase composition, polarization axis alignment, and unique phase distribution within the HZO film. This study introduces a novel approach for analyzing ferroelectric HZO, facilitating reliable characterization of process‐structure‐property relationships imperative to accelerating the growth optimization, performance, and successful implementation of ferroelectric HZO in devices.more » « less
-
Advances in creating polar structures in atomic‐layered hafnia‐zirconia (HfxZr1−xO2) films not only augurs extensive growth in studying ferroelectric nanoelectronics and neuromorphic devices, but also spurs opportunities for exploring novel integrated nanoelectromechanical systems (NEMS). Design and implementation of HfxZr1−xO2NEMS transducers necessitates accurate knowledge of elastic and electromechanical properties. Up to now, all experimental approaches for extraction of morphological content, elastic, and electromechanical properties of HfxZr1−xO2are based on solidly mounted structures, highly stressed films, and electroded architectures. Unlike HfxZr1−xO2layers embedded in electronics, NEMS transducers require free‐standing structures with highly contrasted mechanical boundaries and stress profiles. Here, a nanoresonator‐based approach for simultaneous extraction of Young's modulus and residual stress in free‐standing ferroelectric Hf0.5Zr0.5O2films is presented. High quality factor resonance modes of nanomechanical resonators created in predominantly orthorhombic Hf0.5Zr0.5O2films are measured using nondestructive optical transduction. Further, the evolution of morphology during creation of free‐standing Hf0.5Zr0.5O2structures is closely mapped using X‐ray diffraction measurements, clearly showing transformation of ferroelectric orthorhombic to nonpolar monoclinic phase upon stress relaxation. The extracted Young's modulus of 320.0 ± 29.4 GPa and residual stress ofσ = 577.4 ± 24.1 MPa show the closest match with theoretical calculations for orthorhombic Hf0.5Zr0.5O2.more » « less