skip to main content

Title: Grapevine rootstocks affect growth‐related scion phenotypes

Grape growers use rootstocks to provide protection against pests and pathogens and to modulate viticulture performance such as shoot growth. Our study examined two grapevine scion varieties (‘Chardonnay’ and ‘Cabernet Sauvignon’) grafted to 15 different rootstocks and determined the effect of rootstocks on eight traits important to viticulture. We assessed the vines across five years and identified both year and variety as contributing strongly to trait variation. The effect of rootstock was relatively consistent across years and varieties, explaining between 8.99% and 9.78% of the variation in growth‐related traits including yield, pruning weight, berry weight and Ravaz index (yield to pruning weight ratio). Increases in yield due to rootstock were generally the result of increases in berry weight, likely due to increased water uptake by vines grafted to a particular rootstock. We demonstrated a greater than 50% increase in yield, pruning weight, or Ravaz index by choosing the optimal rootstock, indicating that rootstock choice is crucial for grape growers looking to improve vine performance.

 ;  ;  ;  ;  ;  ;  
Publication Date:
Journal Name:
Plant Direct
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
National Science Foundation
More Like this
  1. The appropriate selection of rootstock-scion combinations to improve yield and fully realize grafting benefits requires an in-depth understanding of rootstock-scion synergy. Toward this end, we grafted two determinate-type scions [grape tomato (‘BHN 1022') and beefsteak tomato (‘Skyway')] onto four rootstocks with different characteristics to examine plant growth, yield performance, biomass production, and fruit mineral nutrient composition. The study was conducted during two growing seasons (spring and fall plantings in Florida) under organic production in high tunnels with the non-grafted scions as controls. Rootstocks had previously been designated as either “generative” (‘Estamino') or “vegetative” (‘DR0141TX') by some commercial suppliers or had not been characterized [‘RST-04-106-T' and ‘SHIELD RZ F1 (61-802)']. Also, ‘Estamino', ‘DR0141TX', and ‘RST-04-106-T' had been described as more vigorous than ‘SHIELD RZ F1 (61-802)'. In both planting seasons (with low levels of soilborne disease pressure), the “vegetative” and “generative” rootstocks increased marketable and total fruit yields for both scions except for the beefsteak tomato grafted with the “vegetative” rootstock in fall planting. Positive effects of ‘RST-04-106-T' on fruit yield varied with scions and planting seasons, and were most manifested when grafted with the beefsteak tomato scion in fall planting. ‘SHIELD RZ F1 (61-802)' led to similar yields as themore »non-grafted controls except for grafting with the grape tomato scion in fall planting. For vegetative and fruit biomass, both the “vegetative” and “generative” rootstocks had positive impacts except for the beefsteak tomato in fall planting. For fruit mineral composition, the “vegetative” and “generative” rootstocks, both highly vigorous, consistently elevated fruit P, K, Ca, Zn, and Fe contents on a dry weight basis, whereas the other rootstocks did not. Overall, although the more vigorous rootstocks enhanced tomato plant productivity and fruit minerals, the evidence presented here does not support the suggestion that the so-called “vegetative” and “generative” rootstocks have different impacts on tomato scion yield, biomass production, or fruit mineral contents. More studies with different production systems and environmental conditions as well as contrasting scion genotypes are needed to further categorize the impacts of rootstocks with different vigor and other characteristics on plant biomass production and their implications on fruit yield development.« less
  2. Abstract Background

    Grafting is a horticultural practice used widely across woody perennial crop species to fuse together the root and shoot system of two distinct genotypes, the rootstock and the scion, combining beneficial traits from both. In grapevine, grafting is used in nearly 80% of all commercial vines to optimize fruit quality, regulate vine vigor, and enhance biotic and abiotic stress-tolerance. Rootstocks have been shown to modulate elemental composition, metabolomic profiles, and the shape of leaves in the scion, among other traits. However, it is currently unclear how rootstock genotypes influence shoot system gene expression as previous work has reported complex and often contradictory findings.


    In the present study, we examine the influence of grafting on scion gene expression in leaves and reproductive tissues of grapevines growing under field conditions for three years. We show that the influence from the rootstock genotype is highly tissue and time dependent, manifesting only in leaves, primarily during a single year of our three-year study. Further, the degree of rootstock influence on scion gene expression is driven by interactions with the local environment.


    Our results demonstrate that the role of rootstock genotype in modulating scion gene expression is not a consistent, unchanging effect, but rathermore »an effect that varies over time in relation to local environmental conditions.

    « less
  3. Growth and yield typically increase when tomato plants are grafted to selected interspecific hybrid rootstocks from which distinctive root system morphologies are envisioned to aid nutrient uptake. We assessed these relationships using a range of exogenous nitrogen (N) supplies under field production conditions. This study analyzed the impact of N on growth, root distribution, N uptake, and N use of determinate ‘Florida 47’ tomato plants grafted onto vigorous, interspecific, hybrid tomato rootstocks ‘Multifort’ and ‘Beaufort’. Six N rates, 56, 112, 168, 224, 280, and 336 kg·ha −1 , were applied to sandy soil in Live Oak, FL, during Spring 2010 and 2011. During both years, the leaf area index, aboveground biomass, and N accumulation (leaf blade, petiole, stem, and fruit) responded quadratically to the increase in N fertilizer rates. Averaged over the two seasons, the aboveground biomass, N accumulation, N use efficiency (NUE), and N uptake efficiency (NUpE) were ≈29%, 31%, 30%, and 33% greater in grafted plants than in nongrafted controls, respectively. More prominent increases occurred in the root length density (RLD) in the uppermost 15 cm of soil; for grafted plants, RLD values in this upper 15-cm layer were significantly greater than those of nongrafted plants during bothmore »years with an average increase of 69% over the two seasons. Across all the grafted and nongrafted plants, the RLD decreased along the soil profile, with ≈60% of the total RLD concentrated in the uppermost 0 to 15 cm of the soil layer. These results demonstrated a clear association between enhanced RLD, especially in the upper 15 cm of soil, and improvements in tomato plant growth, N uptake, and N accumulation with grafting onto vigorous rootstocks.« less
  4. Previous studies of tomato rootstock effects on fruit quality have yielded mixed results, and few attempts have been made to systematically examine the association between rootstock characteristics and tomato fruit quality. In this study, grape tomato (‘BHN 1022’) and beefsteak tomato (‘Skyway’) were grafted onto four rootstocks [‘Estamino’ (vigorous and “generative”), ‘DR0141TX’ (vigorous and “vegetative”), ‘RST-04-106-T’ (uncharacterized), and ‘SHIELD RZ F1 (61–802)’ (mid-vigor, uncharacterized)] and compared to non-grafted scion controls for two growing seasons (Spring and Fall in Florida) in organically managed high tunnels. In both seasons and for both scions, the two vigorous rootstocks, regardless of their designation as “vegetative” (‘DR0141TX’) or “generative” (‘Estamino’), exhibited negative impacts on dry matter content, soluble solids content (SSC), SSC/titratable acidity (TA), lycopene, and ascorbic acid contents. Similar effects on fruit dry matter content and SSC were also observed with the ‘RST-04-106-T’ rootstock, although little to no change was seen with grafting onto ‘SHIELD RZ F1 (61–802)’. Further studies are needed to elucidate the impact of rootstock vigor on tomato volatile profiles and consumer sensory acceptability in order to better determine whether any of the documented effects are of practical importance. On the other hand, the evident effects of scion cultivar and plantingmore »season on fruit quality were observed in most of the measurements. The scion by rootstock interaction affected fruit length, firmness, pH, and total phenolic content, while the planting season by rootstock interaction impacted fruit firmness, pH, total antioxidant capacity, and ascorbic acid and lycopene contents. The multivariate separation pattern of planting season, scion, and rootstock treatments as revealed by the canonical discriminant analysis further indicated that the influence of scion cultivar and planting season on tomato fruit quality could be much more pronounced than the rootstock effects. The fruit color ( C * and H °), length and width, SSC, pH, total antioxidant capacity, ascorbic acid, and lycopene contents were the main attributes distinguishing different scion-planting season groups.« less
  5. Abstract Cultivated grapevines are commonly grafted on closely related species to cope with specific biotic and abiotic stress conditions. The three North American Vitis species V. riparia , V. rupestris , and V. berlandieri , are the main species used for breeding grape rootstocks. Here, we report the diploid chromosome-scale assembly of three widely used rootstocks derived from these species: Richter 110 (110R), Kober 5BB, and 101–14 Millardet et de Grasset (Mgt). Draft genomes of the three hybrids were assembled using PacBio HiFi sequences at an average coverage of 53.1 X-fold. Using the tool suite HaploSync, we reconstructed the two sets of nineteen chromosome-scale pseudomolecules for each genome with an average haploid genome size of 494.5 Mbp. Residual haplotype switches were resolved using shared-haplotype information. These three reference genomes represent a valuable resource for studying the genetic basis of grape adaption to biotic and abiotic stresses, and designing trait-associated markers for rootstock breeding programs.