We show that for certain non-CM elliptic curves E / Q E_{/\mathbb {Q}} such that 3 3 is an Eisenstein prime of good reduction, a positive proportion of the quadratic twists E ψ E_{\psi } of E E have Mordell–Weil rank one and the 3 3 -adic height pairing on E ψ ( Q ) E_{\psi }(\mathbb {Q}) is non-degenerate. We also show similar but weaker results for other Eisenstein primes. The method of proof also yields examples of middle codimensional algebraic cycles over number fields of arbitrarily large dimension (generalized Heegner cycles) that have non-zero p p -adic height. It is not known – though expected – that the archimedian height of these higher-codimensional cycles is non-zero. 
                        more » 
                        « less   
                    
                            
                            Potential automorphy for $$GL_n$$
                        
                    
    
            We prove potential automorphy results for a single Galois representation 𝐺𝐹→𝐺𝐿𝑛(ℚ⎯⎯⎯⎯⎯𝑙) where F is a CM number field. The strategy is to use the p, q switch trick to go between the p-adic and q-adic realisation of a certain variant of the Dwork motive. We choose this variant to break self-duality shape of the motives, but not the Hodge-Tate weights. Another key result to prove is that certain p-adic representations we choose that come from the Dwork motives is ordinarily automorphic. One input is the automorphy lifting theorem in Allen et al.: (Potential automorphy over CM fields, Cornell University, New York 2018) . 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1902265
- PAR ID:
- 10388233
- Date Published:
- Journal Name:
- Inventiones mathematicae
- ISSN:
- 0020-9910
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We prove that the l-adic Chern classes of canonical extensions of automorphic vector bundles, over toroidal compactifications of Shimura varieties of Hodge type over \bar{Q}_p, descend to classes in the l-adic cohomology of the minimal compactifications. These are invariant under the Galois group of the p-adic field above which the variety and the bundle are defined.more » « less
- 
            null (Ed.)Following a suggestion of Peter Scholze, we construct an action of G m ^ \widehat {\mathbb {G}_m} on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the p p -adic modular curve whose ring of functions is Serre’s space of p p -adic modular functions. This action is a local, p p -adic analog of a global, archimedean action of the circle group S 1 S^1 on the lattice-unstable locus of the modular curve over C \mathbb {C} . To construct the G m ^ \widehat {\mathbb {G}_m} -action, we descend a moduli-theoretic action of a larger group on the (big) ordinary Igusa variety of Caraiani-Scholze. We compute the action explicitly on local expansions and find it is given by a simple multiplication of the cuspidal and Serre-Tate coordinates q q ; along the way we also prove a natural generalization of Dwork’s equation τ = log  q \tau =\log q for extensions of Q p / Z p \mathbb {Q}_p/\mathbb {Z}_p by μ p ∞ \mu _{p^\infty } valid over a non-Artinian base. Finally, we give a direct argument (without appealing to local expansions) to show that the action of G m ^ \widehat {\mathbb {G}_m} integrates the differential operator θ \theta coming from the Gauss-Manin connection and unit root splitting, and explain an application to Eisenstein measures and p p -adic L L -functions.more » « less
- 
            We prove a Tannakian form of Drinfeld's lemma for isocrystals on a variety over a finite field, equipped with actions of partial Frobenius operators. This provides an intermediate step towards transferring V. Lafforgue's work on the Langlands correspondence over function fields from$$\ell$$-adic to$$p$$-adic coefficients. We also discuss a motivic variant and a local variant of Drinfeld's lemma.more » « less
- 
            Abstract Let $$E$$ be an elliptic curve defined over $${\mathbb{Q}}$$ of conductor $$N$$, $$p$$ an odd prime of good ordinary reduction such that $E[p]$ is an irreducible Galois module, and $$K$$ an imaginary quadratic field with all primes dividing $Np$ split. We prove Iwasawa main conjectures for the $${\mathbb{Z}}_{p}$$-cyclotomic and $${\mathbb{Z}}_{p}$$-anticyclotomic deformations of $$E$$ over $${\mathbb{Q}}$$ and $K,$ respectively, dispensing with any of the ramification hypotheses on $E[p]$ in previous works. The strategy employs base change and the two-variable zeta element associated to $$E$$ over $$K$$, via which the sought after main conjectures are deduced from Wan’s divisibility towards a three-variable main conjecture for $$E$$ over a quartic CM field containing $$K$$ and certain Euler system divisibilities. As an application, we prove cases of the two-variable main conjecture for $$E$$ over $$K$$. The aforementioned one-variable main conjectures imply the $$p$$-part of the conjectural Birch and Swinnerton-Dyer formula for $$E$$ if $$\operatorname{ord}_{s=1}L(E,s)\leq 1$$. They are also an ingredient in the proof of Kolyvagin’s conjecture and its cyclotomic variant in our joint work with Grossi [1].more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    