- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Allen, Patrick (1)
-
Calegari, Frank (1)
-
Caraiani, Ana (1)
-
Fu, Weibo (1)
-
Gee, Toby (1)
-
Helm, David (1)
-
Le Hung, Bao (1)
-
Miagkov, Konstantin (1)
-
Newton, James (1)
-
Qian, Lie (1)
-
Scholze, Peter (1)
-
Taylor, Richard (1)
-
Thorne, Jack (1)
-
Thorne, Jack A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Allen, Patrick; Calegari, Frank; Caraiani, Ana; Gee, Toby; Helm, David; Le Hung, Bao; Newton, James; Scholze, Peter; Taylor, Richard; Thorne, Jack (, Annals of Mathematics)
-
Miagkov, Konstantin; Thorne, Jack A. (, Forum of Mathematics, Sigma)Abstract Let F be a CM number field. We generalise existing automorphy lifting theorems for regular residually irreducible p -adic Galois representations over F by relaxing the big image assumption on the residual representation.more » « less
-
Qian, Lie (, Inventiones mathematicae)We prove potential automorphy results for a single Galois representation πΊπΉβπΊπΏπ(ββ―β―β―β―β―π) where F is a CM number field. The strategy is to use the p, q switch trick to go between the p-adic and q-adic realisation of a certain variant of the Dwork motive. We choose this variant to break self-duality shape of the motives, but not the Hodge-Tate weights. Another key result to prove is that certain p-adic representations we choose that come from the Dwork motives is ordinarily automorphic. One input is the automorphy lifting theorem in Allen et al.: (Potential automorphy over CM fields, Cornell University, New York 2018) .more » « less
An official website of the United States government

Full Text Available