skip to main content


Title: Asteroseismology of PG 1541 + 651 and BPM 31594 with TESS
ABSTRACT

We present the photometric data from TESS for two known ZZ Ceti stars, PG 1541 + 651 and BPM 31594. Before TESS, both objects only had observations from short runs from ground-based facilities, with three and one period detected, respectively. The TESS data allowed the detection of multiple periodicities, 12 for PG 1541 + 651, and six for BPM 31594, which enables us to perform a detailed asteroseismological study. For both objects, we found a representative asteroseismic model with canonical stellar mass ∼0.61M⊙ and thick hydrogen envelopes, thicker than 10−5.3M*. The detection of triplets in the Fourier transform also allowed us to estimate mean rotation periods, being ∼22 h for PG 1541 + 651 and 11.6 h for BPM 31594, which is consistent with a range of values reported for other ZZ Ceti stars.

 
more » « less
Award ID(s):
1903828
NSF-PAR ID:
10381339
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
518
Issue:
1
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1448-1458
Size(s):
["p. 1448-1458"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Kepler and K2 missions discovered multiple ZZ Ceti white dwarf pulsators that exhibit recurrent outbursts. These outbursting white dwarfs are near the red edge of the ZZ Ceti instability strip, suggesting that the phenomenon is physically related to the cessation of pulsations. We present multi-day ground-based monitoring of the poorly studied red-edge ZZ Ceti pulsator PG 1541+651. We do not detect any outbursts in our data. We do find that this pulsator has a very rich and time-variable spectrum of modes in its periodogram. The white dwarf lies in the northern continuous viewing zone of TESS; therefore, it has extensive archival light curves ripe for a detailed asteroseismic analysis of this star.

     
    more » « less
  2. Context. The possible existence of warm ( T eff  ∼ 19 000 K) pulsating DA white dwarf (WD) stars, hotter than ZZ Ceti stars, was predicted in theoretical studies more than 30 yr ago. These studies reported the occurrence of g -mode pulsational instabilities due to the κ mechanism acting in the partial ionization zone of He below the H envelope in models of DA WDs with very thin H envelopes ( M H / M ⋆  ≲ 10 −10 ). However, to date, no pulsating warm DA WD has been discovered, despite the varied theoretical and observational evidence suggesting that a fraction of WDs should be formed with a range of very low H content. Aims. We re-examine the pulsational predictions for such WDs on the basis of new full evolutionary sequences. We analyze all the warm DAs observed by the TESS satellite up to Sector 9 in order to search for the possible pulsational signal. Methods. We computed WD evolutionary sequences of masses 0.58 and 0.80 M ⊙ with H content in the range −14.5 ≲ log( M H / M ⋆ )≲ − 10, appropriate for the study of pulsational instability of warm DA WDs. Initial models were extracted from progenitors that were evolved through very late thermal pulses on the early cooling branch. We use LPCODE stellar code into which we have incorporated a new full-implicit treatment of time-dependent element diffusion to precisely model the H–He transition zone in evolving WD models with very low H content. The nonadiabatic pulsations of our warm DA WD models were computed in the effective temperature range of 30 000 − 10 000 K, focusing on ℓ = 1 g modes with periods in the range 50 − 1500 s. Results. We find that traces of H surviving the very late thermal pulse float to the surface, eventually forming thin, growing pure H envelopes and rather extended H–He transition zones. We find that such extended transition zones inhibit the excitation of g modes due to partial ionization of He below the H envelope. Only in the cases where the H–He transition is assumed much more abrupt than predicted by diffusion do models exhibit pulsational instability. In this case, instabilities are found only in WD models with H envelopes in the range of −14.5 ≲ log( M H / M ⋆ )≲ − 10 and at effective temperatures higher than those typical for ZZ Ceti stars, in agreement with previous studies. None of the 36 warm DAs observed so far by TESS satellite are found to pulsate. Conclusions. Our study suggests that the nondetection of pulsating warm DAs, if WDs with very thin H envelopes do exist, could be attributed to the presence of a smooth and extended H–He transition zone. This could be considered as indirect proof that element diffusion indeed operates in the interior of WDs. 
    more » « less
  3. null (Ed.)
    Context. We present our findings on 18 previously known ZZ Ceti stars observed by the TESS space telescope in 120 s cadence mode during the survey observation of the southern ecliptic hemisphere. Aims. We focus on the frequency analysis of the space-based observations, comparing the results with findings of previous ground-based measurements. The frequencies detected by the TESS observations can serve as inputs for future asteroseismic analyses. Methods. We performed standard pre-whitening of the data sets to derive the possible pulsation frequencies of the different targets. In some cases, we fit Lorentzians to the frequency groups that emerged as the result of short-term amplitude or phase variations that occurred during the TESS observations. Results. We detected more than 40 pulsation frequencies in seven ZZ Ceti stars observed in the 120 s cadence by TESS, with precision better than 0.1  μ Hz. We found that HE 0532−5605 may be a new outbursting ZZ Ceti. Ten targets do not show any significant pulsation frequencies in their Fourier transforms, due to a combination of their intrinsic faintness and/or crowding on the large TESS pixels. We also detected possible amplitude or phase variations during the TESS observations in some cases. Such behaviour in these targets was not previously identified from ground-based observations. 
    more » « less
  4. null (Ed.)
    ABSTRACT We report on the detection of pulsations of three pulsating subdwarf B stars observed by the Transiting Exoplanet Survey Satellite (TESS) satellite and our results of mode identification in these stars based on an asymptotic period relation. SB 459 (TIC 067584818), SB 815 (TIC 169285097), and PG 0342 + 026 (TIC 457168745) have been monitored during single sectors resulting in 27 d coverage. These data sets allowed for detecting, in each star, a few tens of frequencies that we interpreted as stellar oscillations. We found no multiplets, though we partially constrained mode geometry by means of period spacing, which recently became a key tool in analyses of pulsating subdwarf B stars. Standard routine that we have used allowed us to select candidates for trapped modes that surely bear signatures of non-uniform chemical profile inside the stars. We have also done statistical analysis using collected spectroscopic and asteroseismic data of previously known subdwarf B stars along with our three stars. Making use of high precision trigonometric parallaxes from the Gaia mission and spectral energy distributions we converted atmospheric parameters to stellar ones. Radii, masses, and luminosities are close to their canonical values for extreme horizontal branch stars. In particular, the stellar masses are close to the canonical one of 0.47 M⊙ for all three stars but uncertainties on the mass are large. The results of the analyses presented here will provide important constrains for asteroseismic modelling. 
    more » « less
  5. Abstract

    Hot subdwarf B stars are core-helium burning objects that were once red giants stripped of their outer H envelopes due to binary interactions. Many exhibit pulsations that can be used to determine fundamental stellar parameters like mass and radius. High-cadence TESS photometry of the sdB star BPM 36430 revealed it to be a hybrid-mode pulsator showing several g-mode pulsations and a single strong p-mode oscillation. The latter is likely a radial mode oscillation, given its period (342 s) and high photometric amplitude (2%). Using time-series spectroscopy from the Goodman spectrograph on the 4.1 m SOAR telescope, we detect a sinusoidal radial velocity variation with a semi-amplitude of 4.4 ± 0.4 km s−1and period consistent with photometry of the p-mode oscillation. This detection provides further evidence the 342 s mode is radial in nature, and that the Baade–Wesselink method can be used with additional observations to constrain the stellar mass and radius.

     
    more » « less