skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Materials Exposure Testing in Chloride Molten Salts for Nuclear Applications
Advanced nuclear reactors using alkali chloride molten salts are actively being developed for deployment as safer next generation reactors. These reactors operate more efficiently and can enable a more flexible nuclear fuel cycle. These designs require the development of the understanding of corrosion at operational conditions. Static corrosion studies fail to capture the effects of flowing electrolyte on the corrosion in these systems. To simulate the effects of flow, we have designed and commissioned an apparatus for such corrosion studies. This study explored the corrosion of alloys in LiCl-KCl eutectic molten salt. After long-term exposure under simulated flow conditions, corrosions samples were evaluated using gravimetric analysis, scanning electron microscopy and energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy and the results are compared to corrosion under static conditions. Results and analysis of the effects of fluid flow on the corrosion on structural materials will be presented.  more » « less
Award ID(s):
2117820
PAR ID:
10388329
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Electrochemical Society Meetings Abstract
Volume:
MA2022-02
Issue:
C03
Page Range / eLocation ID:
758-758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Molten salts are under consideration as the working fluid in thermal power generation. Nitrate molten salts store vast amounts of energy at high temperature and are an efficient energy production medium. Nitrate molten salts are corrosive to structural materials in these applications. Static corrosion studies may neglect the effects of fluid flow on corrosion and flowing test loops can be expensive and complex. A rotating cylinder electrode (RCE) can simulate the effects of fluid flow on the corrosion of structural materials and are more compact and economical then flow loops. We have developed a rotating cylinder electrode apparatus to study the corrosion of structural metals in flowing molten salts using accelerated electrochemical corrosion testing. In this study, we have evaluated the corrosion behavior in molten nitrate salts and used various surface characterization techniques to compare the results from static corrosion tests. Results and analysis of these studies will be presented. 
    more » « less
  2. Abstract Three-dimensional bicontinuous porous materials formed by dealloying contribute significantly to various applications including catalysis, sensor development and energy storage. This work studies a method of molten salt dealloying via real-time in situ synchrotron three-dimensional X-ray nano-tomography. Quantification of morphological parameters determined that long-range diffusion is the rate-determining step for the dealloying process. The subsequent coarsening rate was primarily surface diffusion controlled, with Rayleigh instability leading to ligament pinch-off and creating isolated bubbles in ligaments, while bulk diffusion leads to a slight densification. Chemical environments characterized by X-ray absorption near edge structure spectroscopic imaging show that molten salt dealloying prevents surface oxidation of the metal. In this work, gaining a fundamental mechanistic understanding of the molten salt dealloying process in forming porous structures provides a nontoxic, tunable dealloying technique and has important implications for molten salt corrosion processes, which is one of the major challenges in molten salt reactors and concentrated solar power plants. 
    more » « less
  3. Pyroprocessing is a potential route to close the nuclear fuel cycle. Used nuclear fuel (UNF) is electrolytically reduced from UO2 to U0 at a stainless-steel cathode while oxygen evolution occurs at a platinum anode in a molten LiCl-Li2O environment. Platinum is consumed during this process as a result of the formation and spallation of lithium platinate. To increase the economic viability of pyroprocessing, alternative low-cost, electrochemically efficient materials are needed to replace platinum. In this study, metal-oxide coated 316L stainless streel rods were explored as potential replacements. The characteristics of these coatings in molten LiCl-Li2O was evaluated through electrochemical techniques. The surface chemistry of the coatings was explored through X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and scanning electron microscopy before and after exposure to molten salts to understand the degradation of the coatings. Results detailing the performance of the coatings will be presented. 
    more » « less
  4. Abstract This study demonstrates the simultaneous achievement of high strength and excellent corrosion resistance in a Ni-free, high N austenitic stainless steel fabricated by laser powder bed fusion (PBF-LB). The formation of a single-phase austenitic structure was confirmed through X-ray diffraction analysis, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic potentiodynamic polarization tests conducted in 0.6 M NaCl solution at room temperature revealed high breakdown potential (1187 ± 31 mVSCE), indicating excellent corrosion resistance for the additively manufactured Ni-free austenitic stainless steel compared to wrought 316L stainless steel. These findings were further supported by immersion tests in FeCl3solution. The additively fabricated alloy’s yield strength and ultimate tensile strength exceeded 800 MPa and 1 GPa, respectively. The results highlight the potential for developing highly corrosion-resistant, high-strength Ni-free austenitic stainless steel by PBF-LB for possible applications for biomedical implants and structures relating to nuclear energy. 
    more » « less
  5. FeCrAl alloys are promising candidates to replace Zr alloys as fuel cladding materials in nuclear light-water reactors. Grain refinement has been indicated to improve irradiation resistance. To enhance corrosion resistance as well, the effects of grain refinement on steam corrosion behavior were investigated in this work. Samples of Kanthal D alloy (Fe-21Cr-5Al) with two different grain sizes (coarse-grained and ultrafine-grained) were exposed to steam at 1200 °C for 2 hrs. Results indicate improved steam corrosion resistance in ultrafine-grained Kanthal D with formation of a thinner protective Al oxide layer and the presence of a thin underlying Cr oxide layer. 
    more » « less