skip to main content


Title: Titanium: A Metadata-Hiding File-Sharing System with Malicious Security
End-to-end encrypted file-sharing systems enable users to share files without revealing the file contents to the storage servers. However, the servers still learn metadata, including user identities and access patterns. Prior work tried to remove such leakage but relied on strong assumptions. Metal (NDSS '20) is not secure against malicious servers. MCORAM (ASIACRYPT '20) provides confidentiality against malicious servers, but not integrity. Titanium is a metadata-hiding file-sharing system that offers confidentiality and integrity against malicious users and servers. Compared with MCORAM, which offers confidentiality against malicious servers, Titanium also offers integrity. Experiments show that Titanium is 5x-200x faster or more than MCORAM.  more » « less
Award ID(s):
1917627
NSF-PAR ID:
10388342
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Network and Distributed System Security (NDSS) Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    File-sharing systems like Dropbox offer insufficient privacy because a compromised server can see the file contents in the clear. Although encryption can hide such contents from the servers, metadata leakage remains significant. The goal of our work is to develop a file-sharing system that hides metadata---including user identities and file access patterns. Metal is the first file-sharing system that hides such metadata from malicious users and that has a latency of only a few seconds. The core of Metal consists of a new two-server multi-user oblivious RAM (ORAM) scheme, which is secure against malicious users, a metadata-hiding access control protocol, and a capability sharing protocol. Compared with the state-of-the-art malicious-user file-sharing scheme PIR-MCORAM (Maffei et al.'17), which does not hide user identities, Metal hides the user identities and is 500x faster (in terms of amortized latency) or 10^5x faster (in terms of worst-case latency). 
    more » « less
  2. Anonymous communication, that is secure end-to-end and unlinkable, plays a critical role in protecting user privacy by preventing service providers from using message metadata to discover communication links between any two users. Techniques, such as Mix-net, DC-net, time delay, cover traffic, Secure Multiparty Computation (SMC) and Private Information Retrieval, can be used to achieve anonymous communication. SMC-based approach generally offers stronger simulation based security guarantee. In this paper, we propose a simple and novel SMC approach to establishing anonymous communication, easily implementable with two non-colluding servers which have only communication and storage related capabilities. Our approach offers stronger security guarantee against malicious adversaries without incurring a great deal of extra computation. To show its practicality, we implemented our solutions using Chameleon Cloud to simulate the interactions among a million users, and extensive simulations were conducted to show message latency with various group sizes. Our approach is efficient for smaller group sizes and sub-group communication while preserving message integrity. Also, it does not have the message collision problem. 
    more » « less
  3. Noninterference is a popular semantic security condition because it offers strong end-to-end guarantees, it is inherently compositional, and it can be enforced using a simple security type system. Unfortunately, it is too restrictive for real systems. Mechanisms for downgrading information are needed to capture real-world security requirements, but downgrading eliminates the strong compositional security guarantees of noninterference. We introduce _nonmalleable information flow_, a new formal security condition that generalizes noninterference to permit controlled downgrading of both confidentiality and integrity. While previous work on robust declassification prevents adversaries from exploiting the downgrading of confidentiality, our key insight is _transparent endorsement_, a mechanism for downgrading integrity while defending against adversarial exploitation. Robust declassification appeared to break the duality of confidentiality and integrity by making confidentiality depend on integrity, but transparent endorsement makes integrity depend on confidentiality, restoring this duality. We show how to extend a security-typed programming language with transparent endorsement and prove that this static type system enforces nonmalleable information flow, a new security property that subsumes robust declassification and transparent endorsement. Finally, we describe an implementation of this type system in the context of Flame, a flow-limited authorization plugin for the Glasgow Haskell Compiler. 
    more » « less
  4. null (Ed.)
    Distributed applications cannot assume that their security policies will be enforced on untrusted hosts. Trusted execution environments (TEEs) combined with cryptographic mechanisms enable execution of known code on an untrusted host and the exchange of confidential and authenticated messages with it. TEEs do not, however, establish the trustworthiness of code executing in a TEE. Thus, developing secure applications using TEEs requires specialized expertise and careful auditing. This paper presents DFLATE, a core security calculus for distributed applications with TEEs. DFLATE offers high-level abstractions that reflect both the guarantees and limitations of the underlying security mechanisms they are based on. The accuracy of these abstractions is exhibited by asymmetry between confidentiality and integrity in our formal results: DFLATE enforces a strong form of noninterference for confidentiality, but only a weak form for integrity. This reflects the asymmetry of the security guarantees of a TEE: a malicious host cannot access secrets in the TEE or modify its contents, but they can suppress or manipulate the sequence of its inputs and outputs. Therefore DFLATE cannot protect against the suppression of high-integrity messages, but when these messages are delivered, their contents cannot have been influenced by an attacker. 
    more » « less
  5. null (Ed.)
    Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern and thus, offers a strong level of privacy for data outsourcing. An ideal ORAM scheme is expected to offer desirable properties such as low client bandwidth, low server computation overhead, and the ability to compute over encrypted data. S3ORAM (CCS’17) is an efficient active ORAM scheme, which takes advantage of secret sharing to provide ideal properties for data outsourcing such as low client bandwidth, low server computation and low delay. Despite its merits, S3ORAM only offers security in the semi-honest setting. In practice, an ORAM protocol is likely to operate in the presence of malicious adversaries who might deviate from the protocol to compromise the client privacy. In this paper, we propose MACAO, a new multi-server ORAM framework, which offers integrity, access pattern obliviousness against active adversaries, and the ability to perform secure computation over the accessed data. MACAO harnesses authenticated secret sharing techniques and tree-ORAM paradigm to achieve low client communication, efficient server computation, and low storage overhead at the same time. We fully implemented MACAO and conducted extensive experiments in real cloud platforms (Amazon EC2) to validate the performance of MACAO compared with the state-of-the-art. Our results indicate that MACAO can achieve comparable performance to S3ORAM while offering security against malicious adversaries. MACAO is a suitable candidate for integration into distributed file systems with encrypted computation capabilities towards enabling an oblivious functional data outsourcing infrastructure. 
    more » « less