skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Easy-to-Implement Two-Server based Anonymous Communication with Simulation Security
Anonymous communication, that is secure end-to-end and unlinkable, plays a critical role in protecting user privacy by preventing service providers from using message metadata to discover communication links between any two users. Techniques, such as Mix-net, DC-net, time delay, cover traffic, Secure Multiparty Computation (SMC) and Private Information Retrieval, can be used to achieve anonymous communication. SMC-based approach generally offers stronger simulation based security guarantee. In this paper, we propose a simple and novel SMC approach to establishing anonymous communication, easily implementable with two non-colluding servers which have only communication and storage related capabilities. Our approach offers stronger security guarantee against malicious adversaries without incurring a great deal of extra computation. To show its practicality, we implemented our solutions using Chameleon Cloud to simulate the interactions among a million users, and extensive simulations were conducted to show message latency with various group sizes. Our approach is efficient for smaller group sizes and sub-group communication while preserving message integrity. Also, it does not have the message collision problem.  more » « less
Award ID(s):
1946619
PAR ID:
10435842
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2022 ACM on Asia Conference on Computer and Communications Security
Page Range / eLocation ID:
831 to 842
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mazurek, Michelle L; Sherr, Micah. (Ed.)
    This work presents RPM, a scalable anonymous communication protocol suite using secure multiparty computation (MPC) with the offline-online model. We generate random, unknown permutation matrices in a secret-shared fashion and achieve improved (online) performance and the lightest communication and computation overhead for the clients compared to the state of art robust anonymous communication protocols. Using square-lattice shuffling, we make our protocol scale well as the number of clients increases. We provide three protocol variants, each targeting different input volumes and MPC frameworks/libraries. Besides, due to the modular design, our protocols can be easily generalized to support more MPC functionalities and security properties as they get developed. We also illustrate how to generalize our protocols to support two-way anonymous communication and secure sorting. We have implemented our protocols using the MP-SPDZ library suit and the benchmark illustrates that our protocols achieve unprecedented online phase performance with practical offline phases. 
    more » « less
  2. null (Ed.)
    We present a secure two-factor authentication (TFA) scheme based on the user’s possession of a password and a crypto-capable device. Security is “end-to-end” in the sense that the attacker can attack all parts of the system, including all communication links and any subset of parties (servers, devices, client terminals), can learn users’ passwords, and perform active and passive attacks, online and offline. In all cases the scheme provides the highest attainable security bounds given the set of compromised components. Our solution builds a TFA scheme using any Device-enhanced Password-authenticated Key Exchange (PAKE), defined by Jarecki et al., and any Short Authenticated String (SAS) Message Authentication, defined by Vaudenay. We show an efficient instantiation of this modular construction, which utilizes any password-based client-server authentication method, with or without reliance on public-key infrastructure. The security of the proposed scheme is proven in a formal model that we formulate as an extension of the traditional PAKE model. We also report on a prototype implementation of our schemes, including TLS-based and PKI-free variants, as well as several instantiations of the SAS mechanism, all demonstrating the practicality of our approach. Finally, we present a usability study evaluating the viability of our protocol contrasted with the traditional PIN-based TFA approach in terms of efficiency, potential for errors, user experience, and security perception of the underlying manual process. 1 
    more » « less
  3. The fast-paced development and deployment of private messaging applications demands mechanisms to protect against the concomitant potential for abuse. While widely used end-to-end encrypted (E2EE) messaging systems have deployed mechanisms for users to verifiably report abusive messages without compromising the privacy of unreported messages, abuse reporting schemes for systems that additionally protect message metadata are still in their infancy. Existing solutions either focus on a relatively small portion of the design space or incur much higher communication and computation costs than their E2EE brethren. This paper introduces new abuse reporting mechanisms that work for any private messaging system based on onion encryption. This includes low-latency systems that employ heuristic or opportunistic mixing of user traffic, as well as schemes based on mixnets. Along the way, we show that design decisions and abstractions that are well-suited to the E2EE setting may actually impede security and performance improvements in the metadata-hiding setting. We also explore stronger threat models for abuse reporting and moderation not explored in prior work, showing where prior work falls short and how to strengthen both our scheme and others'—including deployed E2EE messaging platforms—to achieve higher levels of security. We implement a prototype of our scheme and find that it outperforms the best known solutions in this setting by well over an order of magnitude for each step of the message delivery and reporting process, with overheads almost matching those of message franking techniques used by E2EE encrypted messaging apps today. 
    more » « less
  4. End-to-end encryption provides strong privacy protections to billions of people, but it also complicates efforts to moderate content that can seriously harm people. To address this concern, Tyagi et al. [CRYPTO 2019] introduced the concept of asymmetric message franking (AMF) so that people can report abusive content to a moderator, while otherwise retaining end-to-end privacy by default and compatibility with anonymous communication systems like Signal’s sealed sender. In this work, we provide a new construction for asymmetric message franking called Hecate that is faster, more secure, and introduces additional functionality compared to Tyagi et al. First, our construction uses fewer invocations of standardized crypto primitives and operates in the plain model. Second, on top of AMF’s accountability and deniability requirements, we also add forward and backward secrecy. Third, we combine AMF with source tracing, another approach to content moderation that has previously been considered only in the setting of non-anonymous networks. Source tracing allows for messages to be forwarded, and a report only identifies the original source who created a message. To provide anonymity for senders and forwarders, we introduce a model of AMF with preprocessing whereby every client authenticates with the moderator out-of-band to receive a token that they later consume when sending a message anonymously. 
    more » « less
  5. System-on-Chip (SoC) supply chain is widely acknowledged as a major source of security vulnerabilities. Potentially malicious third-party IPs integrated on the same Network-on-Chip (NoC) with the trusted components can lead to security and trust concerns. While secure communication is a well studied problem in computer networks domain, it is not feasible to implement those solutions on resource-constrained SoCs. In this paper, we present a lightweight anonymous routing protocol for communication between IP cores in NoC based SoCs. Our method eliminates the major overhead associated with traditional anonymous routing protocols while ensuring that the desired security goals are met. Experimental results demonstrate that existing security solutions on NoC can introduce significant (1.5X) performance degradation, whereas our approach provides the same security features with minor (4%) impact on performance. 
    more » « less