skip to main content


Title: Instance segmentation of soft‐story buildings from street‐view images with semiautomatic annotation
Abstract

In high seismic risk regions, it is important for city managers and decision makers to create programs to mitigate the risk for buildings. For large cities and regions, a mitigation program relies on accurate information of building stocks, that is, a database of all buildings in the area and their potential structural defects, making them vulnerable to strong ground shaking. Structural defects and vulnerabilities could manifest via the building's appearance. One such example is the soft‐story building—its vertical irregularity is often observable from the facade. This structural type can lead to severe damage or even collapse during moderate or severe earthquakes. Therefore, it is critical to screen large building stock to find these buildings and retrofit them. However, it is usually time‐consuming to screen soft‐story structures by conventional methods. To tackle this issue, we used full image classification to screen them out from street view images in our previous study. However, full image classification has difficulties locating buildings in an image, which leads to unreliable predictions. In this paper, we developed an automated pipeline in which we segment street view images to identify soft‐story buildings. However, annotated data for this purpose is scarce. To tackle this issue, we compiled a dataset of street view images and present a strategy for annotating these images in a semi‐automatic way. The annotated dataset is then used to train an instance segmentation model that can be used to detect all soft‐story buildings from unseen images.

 
more » « less
Award ID(s):
2131111
NSF-PAR ID:
10388449
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earthquake Engineering & Structural Dynamics
Volume:
52
Issue:
8
ISSN:
0098-8847
Page Range / eLocation ID:
p. 2520-2532
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    After a disaster, teams of structural engineers collect vast amounts of images from damaged buildings to obtain new knowledge and extract lessons from the event. However, in many cases, the images collected are captured without sufficient spatial context. When damage is severe, it may be quite difficult to even recognize the building. Accessing images of the predisaster condition of those buildings is required to accurately identify the cause of the failure or the actual loss in the building. Here, to address this issue, we develop a method to automatically extract pre‐event building images from 360° panorama images (panoramas). By providing a geotagged image collected near the target building as the input, panoramas close to the input image location are automatically downloaded through street view services (e.g., Google or Bing in the United States). By computing the geometric relationship between the panoramas and the target building, the most suitable projection direction for each panorama is identified to generate high‐quality 2D images of the building. Region‐based convolutional neural networks are exploited to recognize the building within those 2D images. Several panoramas are used so that the detected building images provide various viewpoints of the building. To demonstrate the capability of the technique, we consider residential buildings in Holiday Beach in Rockport, Texas, United States, that experienced significant devastation in Hurricane Harvey in 2017. Using geotagged images gathered during actual postdisaster building reconnaissance missions, we verify the method by successfully extracting residential building images from Google Street View images, which were captured before the event.

     
    more » « less
  2. Image-based localization has been widely used for autonomous vehicles, robotics, augmented reality, etc., and this is carried out by matching a query image taken from a cell phone or vehicle dashcam to a large scale of geo-tagged reference images, such as satellite/aerial images or Google Street Views. However, the problem remains challenging due to the inconsistency between the query images and the large-scale reference datasets regarding various light and weather conditions. To tackle this issue, this work proposes a novel view synthesis framework equipped with deep generative models, which can merge the unique features from the outdated reference dataset with features from the images containing seasonal changes. Our design features a unique scheme to ensure that the synthesized images contain the important features from both reference and patch images, covering seasonable features and minimizing the gap for the image-based localization tasks. The performance evaluation shows that the proposed framework can synthesize the views in various weather and lighting conditions.

     
    more » « less
  3. null (Ed.)
    Image data remains an important tool for post-event building assessment and documentation. After each natural hazard event, significant efforts are made by teams of engineers to visit the affected regions and collect useful image data. In general, a global positioning system (GPS) can provide useful spatial information for localizing image data. However, it is challenging to collect such information when images are captured in places where GPS signals are weak or interrupted, such as the indoor spaces of buildings. The inability to document the images’ locations hinders the analysis, organization, and documentation of these images as they lack sufficient spatial context. In this work, we develop a methodology to localize images and link them to locations on a structural drawing. A stream of images can readily be gathered along the path taken through a building using a compact camera. These images may be used to compute a relative location of each image in a 3D point cloud model, which is reconstructed using a visual odometry algorithm. The images may also be used to create local 3D textured models for building-components-of-interest using a structure-from-motion algorithm. A parallel set of images that are collected for building assessment is linked to the image stream using time information. By projecting the point cloud model to the structural drawing, the images can be overlaid onto the drawing, providing clear context information necessary to make use of those images. Additionally, components- or damage-of-interest captured in these images can be reconstructed in 3D, enabling detailed assessments having sufficient geospatial context. The technique is demonstrated by emulating post-event building assessment and data collection in a real building. 
    more » « less
  4. Nicewonger, Todd E. ; McNair, Lisa D. ; Fritz, Stacey (Ed.)
    https://pressbooks.lib.vt.edu/alaskanative/ At the start of the pandemic, the editors of this annotated bibliography initiated a remote (i.e., largely virtual) ethnographic research project that investigated how COVID-19 was impacting off-site modular construction practices in Alaska Native communities. Many of these communities are located off the road system and thus face not only dramatically higher costs but multiple logistical challenges in securing licensed tradesmen and construction crews and in shipping building supplies and equipment to their communities. These barriers, as well as the region’s long winters and short building seasons, complicate the construction of homes and related infrastructure projects. Historically, these communities have also grappled with inadequate housing, including severe overcrowding and poor-quality building stock that is rarely designed for northern Alaska’s climate (Marino 2015). Moreover, state and federal bureaucracies and their associated funding opportunities often further complicate home building by failing to accommodate the digital divide in rural Alaska and the cultural values and practices of Native communities.[1] It is not surprising, then, that as we were conducting fieldwork for this project, we began hearing stories about these issues and about how the restrictions caused by the pandemic were further exacerbating them. Amidst these stories, we learned about how modular home construction was being imagined as a possible means for addressing both the complications caused by the pandemic and the need for housing in the region (McKinstry 2021). As a result, we began to investigate how modular construction practices were figuring into emergent responses to housing needs in Alaska communities. We soon realized that we needed to broaden our focus to capture a variety of prefabricated building methods that are often colloquially or idiomatically referred to as “modular.” This included a range of prefabricated building systems (e.g., manufactured, volumetric modular, system-built, and Quonset huts and other reused military buildings[2]). Our further questions about prefabricated housing in the region became the basis for this annotated bibliography. Thus, while this bibliography is one of multiple methods used to investigate these issues, it played a significant role in guiding our research and helped us bring together the diverse perspectives we were hearing from our interviews with building experts in the region and the wider debates that were circulating in the media and, to a lesser degree, in academia. The actual research for each of three sections was carried out by graduate students Lauren Criss-Carboy and Laura Supple.[3] They worked with us to identify source materials and their hard work led to the team identifying three themes that cover intersecting topics related to housing security in Alaska during the pandemic. The source materials collected in these sections can be used in a variety of ways depending on what readers are interested in exploring, including insights into debates on housing security in the region as the pandemic was unfolding (2021-2022). The bibliography can also be used as a tool for thinking about the relational aspects of these themes or the diversity of ways in which information on housing was circulating during the pandemic (and the implications that may have had on community well-being and preparedness). That said, this bibliography is not a comprehensive analysis. Instead, by bringing these three sections together with one another to provide a snapshot of what was happening at that time, it provides a critical jumping off point for scholars working on these issues. The first section focuses on how modular housing figured into pandemic responses to housing needs. In exploring this issue, author Laura Supple attends to both state and national perspectives as part of a broader effort to situate Alaska issues with modular housing in relation to wider national trends. This led to the identification of multiple kinds of literature, ranging from published articles to publicly circulated memos, blog posts, and presentations. These materials are important source materials that will likely fade in the vastness of the Internet and thus may help provide researchers with specific insights into how off-site modular construction was used – and perhaps hyped – to address pandemic concerns over housing, which in turn may raise wider questions about how networks, institutions, and historical experiences with modular construction are organized and positioned to respond to major societal disruptions like the pandemic. As Supple pointed out, most of the material identified in this review speaks to national issues and only a scattering of examples was identified that reflect on the Alaskan context. The second section gathers a diverse set of communications exploring housing security and homelessness in the region. The lack of adequate, healthy housing in remote Alaska communities, often referred to as Alaska’s housing crisis, is well-documented and preceded the pandemic (Guy 2020). As the pandemic unfolded, journalists and other writers reported on the immense stress that was placed on already taxed housing resources in these communities (Smith 2020; Lerner 2021). The resulting picture led the editors to describe in their work how housing security in the region exists along a spectrum that includes poor quality housing as well as various forms of houselessness including, particularly relevant for the context, “hidden homelessness” (Hope 2020; Rogers 2020). The term houseless is a revised notion of homelessness because it captures a richer array of both permanent and temporary forms of housing precarity that people may experience in a region (Christensen et al. 2107). By identifying sources that reflect on the multiple forms of housing insecurity that people were facing, this section highlights the forms of disparity that complicated pandemic responses. Moreover, this section underscores ingenuity (Graham 2019; Smith 2020; Jason and Fashant 2021) that people on the ground used to address the needs of their communities. The third section provides a snapshot from the first year of the pandemic into how CARES Act funds were allocated to Native Alaska communities and used to address housing security. This subject was extremely complicated in Alaska due to the existence of for-profit Alaska Native Corporations and disputes over eligibility for the funds impacted disbursements nationwide. The resources in this section cover that dispute, impacts of the pandemic on housing security, and efforts to use the funds for housing as well as barriers Alaska communities faced trying to secure and use the funds. In summary, this annotated bibliography provides an overview of what was happening, in real time, during the pandemic around a specific topic: housing security in largely remote Alaska Native communities. The media used by housing specialists to communicate the issues discussed here are diverse, ranging from news reports to podcasts and from blogs to journal articles. This diversity speaks to the multiple ways in which information was circulating on housing at a time when the nightly news and radio broadcasts focused heavily on national and state health updates and policy developments. Finding these materials took time, and we share them here because they illustrate why attention to housing security issues is critical for addressing crises like the pandemic. For instance, one theme that emerged out of a recent National Science Foundation workshop on COVID research in the North NSF Conference[4] was that Indigenous communities are not only recovering from the pandemic but also evaluating lessons learned to better prepare for the next one, and resilience will depend significantly on more—and more adaptable—infrastructure and greater housing security. 
    more » « less
  5. Abstract

    Street view imagery databases such as Google Street View, Mapillary, and Karta View provide great spatial and temporal coverage for many cities globally. Those data, when coupled with appropriate computer vision algorithms, can provide an effective means to analyse aspects of the urban environment at scale. As an effort to enhance current practices in urban flood risk assessment, this project investigates a potential use of street view imagery data to identify building features that indicate buildings’ vulnerability to flooding (e.g., basements and semi-basements). In particular, this paper discusses (1) building features indicating the presence of basement structures, (2) available imagery data sources capturing those features, and (3) computer vision algorithms capable of automatically detecting the features of interest. The paper also reviews existing methods for reconstructing geometry representations of the extracted features from images and potential approaches to account for data quality issues. Preliminary experiments were conducted, which confirmed the usability of the freely available Mapillary images for detecting basement railings as an example type of basement features, as well as geolocating the features.

     
    more » « less