Reconnaissance teams collect perishable data after each disaster to learn about building performance. However, often these large image sets are not adequately curated, nor do they have sufficient metadata (e.g., GPS), hindering any chance to identify images from the same building when collected by different reconnaissance teams. In this study, Siamese convolutional neural networks (S‐CNN) are implemented and repurposed to establish a building search capability suitable for post‐disaster imagery. This method can automatically rank and retrieve corresponding building images in response to a single query using an image. In the demonstration, we utilize real‐world images collected from 174 reinforced‐concrete buildings affected by the 2016 Southern Taiwan and the 2017 Pohang (South Korea) earthquake events. A quantitative performance evaluation is conducted by examining two metrics introduced for this application: Similarity Score (SS) and Similarity Rank (SR).
more »
« less
Automated Indoor Image Localization to Support a Post-Event Building Assessment
Image data remains an important tool for post-event building assessment and documentation. After each natural hazard event, significant efforts are made by teams of engineers to visit the affected regions and collect useful image data. In general, a global positioning system (GPS) can provide useful spatial information for localizing image data. However, it is challenging to collect such information when images are captured in places where GPS signals are weak or interrupted, such as the indoor spaces of buildings. The inability to document the images’ locations hinders the analysis, organization, and documentation of these images as they lack sufficient spatial context. In this work, we develop a methodology to localize images and link them to locations on a structural drawing. A stream of images can readily be gathered along the path taken through a building using a compact camera. These images may be used to compute a relative location of each image in a 3D point cloud model, which is reconstructed using a visual odometry algorithm. The images may also be used to create local 3D textured models for building-components-of-interest using a structure-from-motion algorithm. A parallel set of images that are collected for building assessment is linked to the image stream using time information. By projecting the point cloud model to the structural drawing, the images can be overlaid onto the drawing, providing clear context information necessary to make use of those images. Additionally, components- or damage-of-interest captured in these images can be reconstructed in 3D, enabling detailed assessments having sufficient geospatial context. The technique is demonstrated by emulating post-event building assessment and data collection in a real building.
more »
« less
- Award ID(s):
- 1835473
- PAR ID:
- 10203304
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 20
- Issue:
- 6
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 1610
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A self-driving car must be able to reliably handle adverse weather conditions (e.g., snowy) to operate safely. In this paper, we investigate the idea of turning sensor inputs (i.e., images) captured in an adverse condition into a benign one (i.e., sunny), upon which the downstream tasks (e.g., semantic segmentation) can attain high accuracy. Prior work primarily formulates this as an unpaired image-to-image translation problem due to the lack of paired images captured under the exact same camera poses and semantic layouts. While perfectly- aligned images are not available, one can easily obtain coarsely- paired images. For instance, many people drive the same routes daily in both good and adverse weather; thus, images captured at close-by GPS locations can form a pair. Though data from repeated traversals are unlikely to capture the same foreground objects, we posit that they provide rich contextual information to supervise the image translation model. To this end, we propose a novel training objective leveraging coarsely- aligned image pairs. We show that our coarsely-aligned training scheme leads to a better image translation quality and improved downstream tasks, such as semantic segmentation, monocular depth estimation, and visual localization.more » « less
-
Hyperspectral cameras collect detailed spectral information at each image pixel, contributing to the identification of image features. The rich spectral content of hyperspectral imagery has led to its application in diverse fields of study. This study focused on cloud classification using a dataset of hyperspectral sky images captured by a Resonon PIKA XC2 camera. The camera records images using 462 spectral bands, ranging from 400 to 1000 nm, with a spectral resolution of 1.9 nm. Our preliminary/unlabeled dataset comprised 33 parent hyperspectral images (HSI), each a substantial unlabeled image measuring 4402-by-1600 pixels. With the meteorological expertise within our team, we manually labeled pixels by extracting 10 to 20 sample patches from each parent image, each patch consisting of a 50-by-50 pixel field. This process yielded a collection of 444 patches, each categorically labeled into one of seven cloud and sky condition categories. To embed the inherent data structure while classifying individual pixels, we introduced an innovative technique to boost classification accuracy by incorporating patch-specific information into each pixel’s feature vector. The posterior probabilities generated by these classifiers, which capture the unique attributes of each patch, were subsequently concatenated with the pixel’s original spectral data to form an augmented feature vector. We then applied a final classifier to map the augmented vectors to the seven cloud/sky categories. The results compared favorably to the baseline model devoid of patch-origin embedding, showing that incorporating the spatial context along with the spectral information inherent in hyperspectral images enhances the classification accuracy in hyperspectral cloud classification. The dataset is available on IEEE DataPort.more » « less
-
Collecting massive amounts of image data is a common way to record the post-event condition of buildings, to be used by engineers and researchers to learn from that event. Key information needed to interpret the image data collected during these reconnaissance missions is the location within the building where each image was taken. However, image localization is difficult in an indoor environment, as GPS is not generally available because of weak or broken signals. To support rapid, seamless data collection during a reconnaissance mission, we develop and validate a fully automated technique to provide robust indoor localization while requiring no prior information about the condition or spatial layout of an indoor environment. The technique is meant for large-scale data collection across multiple floors within multiple buildings. A systematic method is designed to separate the reconnaissance data into individual buildings and individual floors. Then, for data within each floor, an optimization problem is formulated to automatically overlay the path onto the structural drawings providing robust results, and subsequently, yielding the image locations. The end-to end technique only requires the data collector to wear an additional inexpensive motion camera, thus, it does not add time or effort to the current rapid reconnaissance protocol. As no prior information about the condition or spatial layout of the indoor environment is needed, this technique can be adapted to a large variety of building environments and does not require any type of preparation in the postevent settings. This technique is validated using data collected from several real buildings.more » « less
-
Abstract. We present 4Diff, a 3D-aware diffusion model addressing the exo-to-ego viewpoint translation task—generating first-person (egocentric) view images from the corresponding third-person (exocentric) images. Building on the diffusion model’s ability to generate photorealistic images, we propose a transformer-based diffusion model that incorporates geometry priors through two mechanisms: (i) egocentric point cloud rasterization and (ii) 3D-aware rotary cross-attention. Egocentric point cloud rasterization converts the input exocentric image into an egocentric layout, which is subsequently used by a diffusion image transformer. As a component of the diffusion transformer’s denoiser block, the 3D-aware rotary cross-attention further incorporates 3D information and semantic features from the source exocentric view. Our 4Diff achieves state-of-the-art results on the challenging and diverse Ego-Exo4D multiview dataset and exhibits robust generalization to novel environments not encountered during training. Our code, processed data, and pretrained models are publicly available at https://klauscc.github.io/4diff.more » « less
An official website of the United States government

