skip to main content


Title: Lantern‐type dinickel complexes: An exploration of possibilities for nickel–nickel bonding with bridging bidentate ligands
Abstract

Many binuclear nickel complexes have NiNi distances suggesting NiNi covalent bonds, including lantern‐type complexes with bridging bidentate ligands. This DFT study treats tetragonal, trigonal, and digonal lantern‐type complexes with the formamidinate, guanidinate, and formate ligands, besides some others. Formal bond orders (ranging from zero to two) are assigned to all the NiNi bonds on the basis of MO occupancy considerations. A VB‐based electron counting approach assigns plausible resonance structures to the dinickel cores. Model tetragonal complexes with the dimethylformamidinate and the dithioformate ligands have singlet ground states whose non‐covalently bonded NiNi distances are close to those in their experimentally known counterparts. Trigonal dinickel complexes are unknown, but are predicted to have quartet ground states with NiNi bonds of order 0.5. The model digonal complexes are predicted to have triplet ground states, but the predicted NiNi bond lengths are longer than those found in their experimentally known counterparts. This could owe to inadequate treatment of electron correlation by DFT in these short NiNi bonds with their multiconfigurational character. All the NiNi bond distances here are categorized into ranges according to the NiNi bond orders of 0, 0.5, 1, 1.5, and 2, no NiNi bonds of order higher than two being identified. The NiNi bonds of given order in these lantern‐type complexes are consistently shorter than the corresponding NiNi bonds in dinickel complexes having carbonyl ligands, attributable to the metalmetal bond lengthening effect of CO ligands.

 
more » « less
NSF-PAR ID:
10388459
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
44
Issue:
3
ISSN:
0192-8651
Format(s):
Medium: X Size: p. 355-366
Size(s):
["p. 355-366"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vanadium forms binuclear complexes with a variety of ligands often containing V≡V triple bonds. Many tetragonal divanadium paddlewheel complexes with bridging bidentate ligands have been experimentally characterized. This research exhaustively treats model tetragonal, trigonal, and digonal paddlewheel‐type divanadium complexes V2Lx(L=formamidinate, guanidinate, and carboxylate;x=2, 3, 4), each in the three lowest‐energy spin states. The V−V formal bond orders are obtained from metal−metal MO diagrams for representative structures. A number of short V−V multiple bonds of order 3, 3.5, and 4 are found in these model complexes. The short V≡V triple bonds and singlet ground state predicted here for the model tetragonal complexes correspond well with the limited experimental results for the series of known tetragonal paddlewheels. Digonal divanadium lanterns with very short V−V quadruple bonds are predicted as interesting synthetic targets. The V−V bond distances are categorized into distinct ranges according to the formal bond order values from 0.5 to 4. These bond length ranges are compared with the ranges compiled for other divanadium complexes including carbonyl complexes.

     
    more » « less
  2. null (Ed.)
    The use of radical bridging ligands to facilitate strong magnetic exchange between paramagnetic metal centers represents a key step toward the realization of single-molecule magnets with high operating temperatures. Moreover, bridging ligands that allow the incorporation of high-anisotropy metal ions are particularly advantageous. Toward these ends, we report the synthesis and detailed characterization of the dinuclear hydroquinone-bridged complexes [(Me 6 tren) 2 MII2(C 6 H 4 O 2 2− )] 2+ (Me 6 tren = tris(2-dimethylaminoethyl)amine; M = Fe, Co, Ni) and their one-electron-oxidized, semiquinone-bridged analogues [(Me 6 tren) 2 MII2(C 6 H 4 O 2 − ˙)] 3+ . Single-crystal X-ray diffraction shows that the Me 6 tren ligand restrains the metal centers in a trigonal bipyramidal geometry, and coordination of the bridging hydro- or semiquinone ligand results in a parallel alignment of the three-fold axes. We quantify the p -benzosemiquinone–transition metal magnetic exchange coupling for the first time and find that the nickel( ii ) complex exhibits a substantial J < −600 cm −1 , resulting in a well-isolated S = 3/2 ground state even as high as 300 K. The iron and cobalt complexes feature metal–semiquinone exchange constants of J = −144(1) and −252(2) cm −1 , respectively, which are substantially larger in magnitude than those reported for related bis(bidentate) semiquinoid complexes. Finally, the semiquinone-bridged cobalt and nickel complexes exhibit field-induced slow magnetic relaxation, with relaxation barriers of U eff = 22 and 46 cm −1 , respectively. Remarkably, the Orbach relaxation observed for the Ni complex is in stark contrast to the fast processes that dominate relaxation in related mononuclear Ni II complexes, thus demonstrating that strong magnetic coupling can engender slow magnetic relaxation. 
    more » « less
  3. Pyridine and quinoline undergo selective C–H activation in the 2-position with Rh and Ir complexes of a boryl/bis(phosphine) PBP pincer ligand, resulting in a 2-pyridyl bridging the transition metal and the boron center. Examination of this reactivity with Rh and Ir complexes carrying different non-pincer ligands on the transition metal led to the realization of the possible isomerism derived from the 2-pyridyl fragment connecting either via B–N/C–M bonds or via B–C/N–M bonds. This M–C/M–N isomerism was systematically examined for four structural types. Each of these types has a defined set of ligands on Rh/Ir besides 2-pyridyl and PBP. A pair of M–C/M–N isomers for each type was computationally examined for Rh and for Ir, totaling 16 compounds. Several of these compounds were isolated or observed in solution by experimental methods, in addition to a few 2-quinolyl variants. The DFT predictions concerning the thermodynamic preference within each M–C/M–N isomeric match the experimental findings very well. In two cases where DFT predicts <2 kcal mol −1 difference in free energy, both isomers were experimentally observed in solution. Analysis of the structural data, of the relevant Wiberg bond indices, and of the ETS-NOCV partitioning of the interaction of the 2-pyridyl fragment with the rest of the molecule points to the strength of the M–C(pyridyl) bond as the dominant parameter determining the relative M–C/M–N isomer favorability. This M–C bond is always stronger for the analogous Ir vs. Rh compounds, but the nature of the ligand trans to it has a significant influence, as well. DFT calculations were used to evaluate the mechanism of isomerization for one of the molecule types. 
    more » « less
  4. Density functional theory (DFT) is widely used in transition-metal chemistry, yet essential properties such as spin-state energetics in transition-metal complexes (TMCs) are well known to be sensitive to the choice of the exchange-correlation functional. Increasing the amount of exchange in a functional typically shifts the preferred ground state in first-row TMCs from low-spin to high-spin by penalizing delocalization error, but the effect on properties of second-row complexes is less well known. We compare the exchange sensitivity of adiabatic spin-splitting energies in pairs of mononuclear 3d and 4d mid-row octahedral transition metal complexes. We analyze hundreds of complexes assembled from four metals in two oxidation states with ten small monodentate ligands that span a wide range of field strengths expected to favor a variety of ground states. We observe consistently lower but proportional sensitivity to exchange fraction among 4d TMCs with respect to their isovalent 3d TMC counterparts, leading to the largest difference in sensitivities for the strongest field ligands. The combined effect of reduced exchange sensitivities and the greater low-spin bias of most 4d TMCs means that while over one-third of 3d TMCs change ground states over a modest variation (ca. 0.0–0.3) in exchange fraction, almost no 4d TMCs do. Differences in delocalization, as judged through changes in the metal–ligand bond lengths of spin states, do not explain the distinct behavior of 4d TMCs. Instead, evaluation of potential energy curves in 3d and 4d TMCs reveals that higher exchange sensitivities in 3d TMCs are likely due to the opposing effect of exchange on the low-spin and high-spin states, whereas the effect on both spin states is more comparable in 4d TMCs. 
    more » « less
  5. null (Ed.)
    The electronic structure of a dimeric manganese hydride catalyst supported by β-diketiminate ligands, [( 2,6-iPr2Ph BDI)Mn(μ-H)] 2 , was investigated with density functional theory. A triple bond between the manganese centres was anticipated from simple electron-counting rules; however, calculations revealed Mn–Mn Mayer bond orders of 0.21 and 0.27 for the ferromagnetically-coupled and antiferromagnetically-coupled extremes, respectively. In accordance with experimentally determined Heisenberg exchange coupling constants of −15 ± 0.1 cm −1 (SQUID) and −10.2 ± 0.7 cm −1 (EPR), the calculated J 0 value of −10.9 cm −1 confirmed that the ground state involves antiferromagnetic coupling between high spin Mn( ii )-d 5 centres. The effect of steric bulk on the bond order was examined via a model study with the least sterically-demanding version of the β-diketiminate ligand and was found to be negligible. Mixing between metal- and β-diketiminate-based orbitals was found to be responsible for the absence of a metal–metal multiple bond. The bridging hydrides give rise to a relatively close positioning of the metal centres, while bridging atoms possessing 2p orbitals result in longer Mn–Mn distances and more stable dimers. The synthesis and characterization of the bridging hydroxide variant, [( 2,6-iPr2Ph BDI)Mn(μ-OH)] 2 , provides experimental support for these assessments. 
    more » « less