Abstract Background. Wildfire smoke events are increasing in frequency and intensity due to climate change. Children are especially vulnerable to health effects even at moderate smoke levels. However, it is unclear how parents respond to Air Quality Indices (AQIs) frequently used by agencies to communicate air pollution health risks.Methods. In an experiment (3 × 2 × 2 factorial design), 2,100 parents were randomly assigned to view one of twelve adapted AQI infographics that varied by visual (table, line, gauge), index type (AQI [0-500], AQHI [1-11+]), and risk level (moderate, high). Participants were told to imagine encountering the infographic in a short-term exposure scenario. They reported worry about wildfire smoke, intentions to take risk-mitigating actions (e.g., air purifier use), and support for various exposure reduction policies. Subsequently, participants were told to imagine encountering the same infographic daily during a school week in a long-term exposure scenario and again reported worry, action intentions, and policy support.Results. Parents’ responses significantly differentiated between risk levels that both pose a threat to children’s health; worry and action intentions were much higher in the high-risk group than the moderate-risk group in both short-exposure (F = 748.68 p<.001; F = 411.59, p<.001) and long-exposure scenarios (F = 470.51, p<.001; F = 212.01, p<.001). However, in the short-exposure scenario, when shown the AQHI [1-11+] with either the line or gauge visuals, parents’ action intentions were more similar between moderate- and high-risk level groups (3-way interaction, F = 6.03, p = .002).Conclusions. These results suggest some index formats such as the AQHI—rather than the AQI—may better attune parents to moderate levels of wildfire smoke being dangerous to children’s health. Our research offers insights for agencies and officials seeking to improve current public education efforts during wildfire smoke events and speaks to the critical need to educate parents and help them act short-term and long-term to protect children’s health.
more »
« less
“It’s Worse to Breathe It Than to Smoke It”: Secondhand Smoke Beliefs in a Group of Mexican and Central American Immigrants in the United States
This analysis describes beliefs about secondhand smoke and its health effects held by Mexican and Central American immigrants in North Carolina. Data from 60 semistructured, in-depth interviews were subjected to saliency analysis. Participant discussions of secondhand smoke centered on four domains: (1) familiarity and definition of secondhand smoke, (2) potency of secondhand smoke, (3) general health effects of secondhand smoke, and (4) child health effects of secondhand smoke. Secondhand smoke was generally believed to be more harmful than primary smoke. Mechanisms for the potency and health effects of secondhand smoke involved the smell of secondhand smoke, secondhand smoke being an infection and affecting the immune system, and personal strength being protective of secondhand smoke. Understanding these health beliefs informs a framework for further health education and intervention to reduce smoking and secondhand smoke exposure in this vulnerable population.
more »
« less
- Award ID(s):
- 1612616
- PAR ID:
- 10388494
- Date Published:
- Journal Name:
- International Journal of Environmental Research and Public Health
- Volume:
- 17
- Issue:
- 22
- ISSN:
- 1660-4601
- Page Range / eLocation ID:
- 8630
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Wildland fire is increasingly recognized as a driver of bioaerosol emissions, but the effects that smoke-emitted microbes have on the diversity and community assembly patterns of the habitats where they are deposited remain unknown. In this study, we examined whether microbes aerosolized by biomass burning smoke detectably impact the composition and function of soil sinks using lab-based mesocosm experiments. Soils either containing the native microbial community or presterilized by γ-irradiation were inundated with various doses of smoke from native tallgrass prairie grasses. Smoke-inundated, γ-irradiated soils exhibited significantly higher respiration rates than both smoke-inundated, native soils and γ-irradiated soils exposed to ambient air only. Microbial communities in γ-irradiated soils were significantly different between smoke-treated and control soils, which supports the hypothesis that wildland fire smoke can act as a dispersal agent. Community compositions differed based on smoke dose, incubation time, and soil type. Concentrations of phosphate and microbial biomass carbon and nitrogen together with pH were significant predictors of community composition. Source tracking analysis attributed smoke as contributing nearly 30% of the taxa found in smoke-inundated, γ-irradiated soils, suggesting smoke may play a role in the recovery of microbial communities in similar damaged soils. Our findings demonstrate that short-distance microbial dispersal by biomass burning smoke can influence the assembly processes of microbial communities in soils and has implications for a broad range of subjects including agriculture, restoration, plant disease, and biodiversity.more » « less
-
Wildfire smoke, particularly particulate matter less than 2.5 microns (PM2.5), represents a major source of air pollution and a growing public health problem. PM2.5 is a general term used for any particulate < 2.5 µm; however, a wide variety of particulates with different physical and chemical properties can be formed in this size range. The health impacts of PMs are controlled by their size. Unlike larger particulates, which only enter the respiratory tract, fine PMs (<0.1 µm) can also enter the bloodstream and even pass through the blood-brain barrier. The health risks due to exposure to PM can be different for various PM phases with different physical properties, which is poorly understood. We collected wildfire smoke from more than 10 major wildfires in the Western US using active air samplers that separate particles in different size ranges (>2.5 µm - <0.25 µm). Particles were collected on filters, which are pre-weighted and loaded into the impactor. The filters were weighted and compared with the pre-weight values to calculate the mass of particles collected at each size range. Our results revealed that for all the smoke from varied wildfires, the mass of particles increased with decreasing size, with the majority (more than 50%) being less than 0.25 μm. In addition, the PM2.5 total concentration was recorded using an air quality monitor and compared to the particle size distribution in different smoke samples. The results showed that as the overall concentration of wildfire smoke decreases, the fraction of particles smaller than 0.250 microns increases even more. This suggests that these ultrafine particles not only make up the majority of PM in wildfire smoke but are also more persistent in the atmosphere, even when the total PM concentration is low. Our findings highlight the magnitude of health risks posed by PM and underscore the urgent need for effective solutions to reduce respiratory exposure in affected communities.more » « less
-
Abstract BackgroundWildfire smoke contributes substantially to the global disease burden and is a major cause of air pollution in the US states of Oregon and Washington. Climate change is expected to bring more wildfires to this region. Social media is a popular platform for health promotion and a need exists for effective communication about smoke risks and mitigation measures to educate citizens and safeguard public health. MethodsUsing a sample of 1,287 Tweets from 2022, we aimed to analyze temporal Tweeting patterns in relation to potential smoke exposure and evaluate and compare institutions’ use of social media communication best practices which include (i) encouraging adoption of smoke-protective actions; (ii) leveraging numeric, verbal, and Air Quality Index risk information; and (iii) promoting community-building. Tweets were characterized using keyword searches and the Linguistic Inquiry and Word Count (LIWC) software. Descriptive and inferential statistics were carried out. Results44% of Tweets in our sample were authored between January-August 2022, prior to peak wildfire smoke levels, whereas 54% of Tweets were authored during the two-month peak in smoke (September-October). Institutional accounts used Twitter (or X) to encourage the adoption of smoke-related protective actions (82% of Tweets), more than they used it to disseminate wildfire smoke risk information (25%) or promote community-building (47%). Only 10% of Tweets discussed populations vulnerable to wildfire smoke health effects, and 14% mentioned smoke mitigation measures. Tweets from Washington-based accounts used significantly more verbal and numeric risk information to discuss wildfire smoke than Oregon-based accounts (p = 0.042 andp = 0.003, respectively); however, Tweets from Oregon-based accounts on average contained a higher percentage of words associated with community-building language (p < 0.001). ConclusionsThis research provides practical recommendations for public health practitioners and researchers communicating wildfire smoke risks on social media. As exposures to wildfire smoke rise due to climate change, reducing the environmental disease burden requires health officials to leverage popular communication platforms, distribute necessary health-related messaging rapidly, and get the message right. Timely, evidence-based, and theory-driven messaging is critical for educating and empowering individuals to make informed decisions about protecting themselves from harmful exposures. Thus, proactive and sustained communications about wildfire smoke should be prioritized even during wildfire “off-seasons.”more » « less
-
Abstract Wildfires cause elevated air pollution that can be detrimental to human health. However, health impact assessments associated with emissions from wildfire events are subject to uncertainty arising from different sources. Here, we quantify and compare major uncertainties in mortality and morbidity outcomes of exposure to fine particulate matter (PM2.5) pollution estimated for a series of wildfires in the Southeastern U.S. We present an approach to compare uncertainty in estimated health impacts specifically due to two driving factors, wildfire‐related smoke PM2.5fields and variability in concentration‐response parameters from epidemiologic studies of ambient and smoke PM2.5. This analysis, focused on the 2016 Southeastern wildfires, suggests that emissions from these fires had public health consequences in North Carolina. Using several methods based on publicly available monitor data and atmospheric models to represent wildfire‐attributable PM2.5, we estimate impacts on several health outcomes and quantify associated uncertainty. Multiple concentration‐response parameters derived from studies of ambient and wildfire‐specific PM2.5are used to assess health‐related uncertainty. Results show large variability and uncertainty in wildfire impact estimates, with comparable uncertainties due to the smoke pollution fields and health response parameters for some outcomes, but substantially larger health‐related uncertainty for several outcomes. Consideration of these uncertainties can support efforts to improve estimates of wildfire impacts and inform fire‐related decision‐making.more » « less
An official website of the United States government

