skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Safe and Efficient Model Predictive Control Using Neural Networks: An Interior Point Approach
Model predictive control (MPC) provides a useful means for controlling systems with constraints, but suffers from the computational burden of repeatedly solving an optimization problem in real time. Offline (explicit) solutions for MPC attempt to alleviate real time computational challenges using either multiparametric programming or machine learning. The multiparametric approaches are typically applied to linear or quadratic MPC problems, while learning-based approaches can be more flexible and are less memory-intensive. Existing learning-based approaches offer significant speedups, but the challenge becomes ensuring constraint satisfaction while maintaining good performance. In this paper, we provide a neural network parameterization of MPC policies that explicitly encodes the constraints of the problem. By exploring the interior of the MPC feasible set in an unsupervised learning paradigm, the neural network finds better policies faster than projection-based methods and exhibits substantially shorter solve times. We use the proposed policy to solve a robust MPC problem, and demonstrate the performance and computational gains on a standard test system.  more » « less
Award ID(s):
1807142
PAR ID:
10388612
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the IEEE Conference on Decision and Control
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Safe operations of autonomous mobile robots in close proximity to humans, creates a need for enhanced trajectory tracking (with low tracking errors). Linear optimal control techniques such as Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) have been used successfully for low-speed applications while leveraging their model-based methodology with manageable computational demands. However, model and parameter uncertainties or other unmodeled nonlinearities may cause poor control actions and constraint violations. Nonlinear MPC has emerged as an alternate optimal-control approach but needs to overcome real-time deployment challenges (including fast sampling time, design complexity, and limited computational resources). In recent years, the optimal control-based deployments have benefitted enormously from the ability of Deep Neural Networks (DNNs) to serve as universal function approximators. This has led to deployments in a plethora of previously inaccessible applications – but many aspects of generalizability, benchmarking, and systematic verification and validation coupled with benchmarking have emerged. This paper presents a novel approach to fusing Deep Reinforcement Learning-based (DRL) longitudinal control with a traditional PID lateral controller for autonomous navigation. Our approach follows (i) Generation of an adequate fidelity simulation scenario via a Real2Sim approach; (ii) training a DRL agent within this framework; (iii) Testing the performance and generalizability on alternate scenarios. We use an initial tuned set of the lateral PID controller gains for observing the vehicle response over a range of velocities. Then we use a DRL framework to generate policies for an optimal longitudinal controller that successfully complements the lateral PID to give the best tracking performance for the vehicle. 
    more » « less
  2. The performance of Adaptive Bitrate (ABR) algorithms for video streaming depends on accurately predicting the download time of video chunks. Existing prediction approaches (i) assume chunk download times are dominated by network throughput; and (ii) apriori cluster sessions (e.g., based on ISP and CDN) and only learn from sessions in the same cluster. We make three contributions. First, through analysis of data from real-world video streaming sessions, we show (i) apriori clustering prevents learning from related clusters; and (ii) factors such as the Time to First Byte (TTFB) are key components of chunk download times but not easily incorporated into existing prediction approaches. Second, we propose Xatu, a new prediction approach that jointly learns a neural network sequence model with an interpretable automatic session clustering method. Xatu learns clustering rules across all sessions it deems relevant, and models sequences with multiple chunk-dependent features (e.g., TTFB) rather than just throughput. Third, evaluations using the above datasets and emulation experiments show that Xatu significantly improves prediction accuracies by 23.8% relative to CS2P (a state-of-the-art predictor). We show Xatu provides substantial performance benefits when integrated with multiple ABR algorithms including MPC (a well studied ABR algorithm), and FuguABR (a recent algorithm using stochastic control) relative to their default predictors (CS2P and a fully connected neural network respectively). Further, Xatu combined with MPC outperforms Pensieve, an ABR based on deep reinforcement learning. 
    more » « less
  3. The performance of Adaptive Bitrate (ABR) algorithms for video streaming depends on accurately predicting the download time of video chunks. Existing prediction approaches (i) assume chunk download times are dominated by network throughput; and (ii) apriori cluster sessions (e.g., based on ISP and CDN) and only learn from sessions in the same cluster. We make three contributions. First, through analysis of data from real-world video streaming sessions, we show (i) apriori clustering prevents learning from related clusters; and (ii) factors such as the Time to First Byte (TTFB) are key components of chunk download times but not easily incorporated into existing prediction approaches. Second, we propose Xatu, a new prediction approach that jointly learns a neural network sequence model with an interpretable automatic session clustering method. Xatu learns clustering rules across all sessions it deems relevant, and models sequences with multiple chunk-dependent features (e.g., TTFB) rather than just throughput. Third, evaluations using the above datasets and emulation experiments show that Xatu significantly improves prediction accuracies by 23.8% relative to CS2P (a state-of-the-art predictor). We show Xatu provides substantial performance benefits when integrated with multiple ABR algorithms including MPC (a well studied ABR algorithm), and FuguABR (a recent algorithm using stochastic control) relative to their default predictors (CS2P and a fully connected neural network respectively). Further, Xatu combined with MPC outperforms Pensieve, an ABR based on deep reinforcement learning. 
    more » « less
  4. This letter introduces a novel graph convolutional neural network (GCN) architecture for solving the optimal switching problem in distribution networks while integrating the underlying power flow equations in the learning process. The switching problem is formulated as a mixed-integer second-order cone program (MISOCP), recognized for its computational intensity making it impossible to solve in many real-world cases. Transforming the existing literature, the proposed learning algorithm is augmented with mathematical model information representing physical system constraints both during and post training stages to ensure the feasibility of the rendered decisions. The findings highlight the significant potential of applying predictions from a linearized model to the MISOCP form. 
    more » « less
  5. null (Ed.)
    With increase in the frequency of natural disasters such as hurricanes that disrupt the supply from the grid, there is a greater need for resiliency in electric supply. Rooftop solar photovoltaic (PV) panels along with batteries can provide resiliency to a house in a blackout due to a natural disaster. Our previous work showed that intelligence can reduce the size of a PV+battery system for the same level of post-blackout service compared to a conventional system that does not employ intelligent control. The intelligent controller proposed is based on model predictive control (MPC), which has two main challenges. One, it requires simple yet accurate models as it involves real-time optimization. Two, the discrete actuation for residential loads (on/off) makes the underlying optimization problem a mixed-integer program (MIP) which is challenging to solve. An attractive alternative to MPC is reinforcement learning (RL) as the real-time control computation is both model-free and simple. These points of interest accompany certain trade-offs; RL requires computationally expensive offline learning, and its performance is sensitive to various design choices. In this work, we propose an RL-based controller. We compare its performance with the MPC controller proposed in our prior work and a non-intelligent baseline controller. The RL controller is found to provide a resiliency performance — by commanding critical loads and batteries—similar to MPC with a significant reduction in computational effort. 
    more » « less