skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ion selective nano-mesh electrode for long-term continuous monitoring of wastewater quality fabricated using template-guided membrane immobilization
Ion selective electrode (ISE) sensors have been broadly applied for real-time in situ monitoring of ion concentrations in water environments. However, ISE sensors suffer from critical problems, such as ionophore leaching, water-penetration, poor electrochemical stability, and resulting short life spans. In this study, a template-guided membrane matrix immobilization strategy was pursued as a novel ISE sensor fabrication methodology to enhance its sensing characteristics and longevity. Specifically, nano-porous anodized aluminum oxide (AAO) was used as the template for an NH 4 + -specific ISE sensor. A nano-porous nickel mesh eventually replaced the template and formed a compact, high-surface juncture with the NH 4 + ion-selective membrane matrix. The resulting template-guided nano-mesh ISE (TN-ISE) sensor displayed enhanced electrochemical stability ( i.e. , capacitance increased by 50%, reading drift reduced by 75%) when compared to a regular single-wall carbon nanotube (SW-CNT) ISE sensor used as the standard. The interface between the nano-mesh electrode and the ion selective membrane matrix was compact enough to prevent water influx at the electrode interface. This minimized ionophore leaching and increased the mechanical integrity of the TN-ISE sensor. The practical advantages of the novel sensor were validated via long-term (360 hours) tests in real wastewater, returning a small average error of 1.28% over this time. The results demonstrate the feasibility of the template-guided nano-mesh design and fabrication strategy toward ISEs for long-term continuous monitoring of water or wastewater quality.  more » « less
Award ID(s):
1706343
PAR ID:
10388665
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Science: Nano
Volume:
9
Issue:
6
ISSN:
2051-8153
Page Range / eLocation ID:
2149 to 2160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Complex graphene electrode fabrication protocols including conventional chemical vapor deposition and graphene transfer techniques as well as more recent solution‐phase printing and postprint annealing methods have hindered the wide‐scale implementation of electrochemical devices including solid‐state ion‐selective electrodes (ISEs). Herein, a facile graphene ISE fabrication technique that utilizes laser induced graphene (LIG), formed by converting polyimide into graphene by a CO2laser and functionalization with ammonium ion (NH4+) and potassium ion (K+) ion‐selective membranes, is demonstrated. The electrochemical LIG ISEs exhibit a wide sensing range (0.1 × 10−3–150 × 10−3mfor NH4+and 0.3 × 10−3–150 × 10−3mfor K+) with high stability (minimal drop in signal after 3 months of storage) across a wide pH range (3.5–9.0). The LIG ISEs are also able to monitor the concentrations of NH4+and K+in urine samples (29–51% and 17–61% increase for the younger and older patient; respectively, after dehydration induction), which correlate well with conventional hydration status measurements. Hence, these results demonstrate a facile method to perform in‐field ion sensing and are the first steps in creating a protocol for quantifying hydration levels through urine testing in human subjects. 
    more » « less
  2. Abstract The chemical composition of growing media is a key factor for plant growth, impacting agricultural yield and sustainability. However, there is a lack of affordable chemical sensors for ubiquitous nutrient ion monitoring in agricultural applications. This work investigates using fully printed ion‐sensor arrays to measure the concentrations of nitrate, ammonium, and potassium in mixed‐electrolyte media. Ion sensor arrays composed of nitrate, ammonium, and potassium ion‐selective electrodes and a printed silver‐silver chloride (Ag/AgCl) reference electrode are fabricated and characterized in aqueous solutions in a range of concentrations that encompass what is typical for agricultural growing media (0.01 mm–1m). The sensors are also tested in mixed‐electrolyte solutions of NaNO3, NH4Cl, and KCl of varying concentrations, and the recorded potentials are input into Nernstian and artificial neural network models to compare the prediction accuracy of the models against ground truth. The artificial neural network models demonstrated higher accuracy over the Nernstian model, and the model using only ion‐sensor inputs is 7.5% more accurate than the Nernstian model under the same conditions. By enabling more precise and efficient fertilizer application, these sensor arrays coupled to computational models can help increase crop yields, optimize resource use, and reduce environmental impact. 
    more » « less
  3. Abstract Lithium is a drug widely employed for the treatment of bipolar disorder owing to its high efficacy in mood management and suicide prevention. However, this efficacy is often undermined by misdosing and nonadherence, and diligent drug monitoring is required during treatment. Standard lithium monitoring involves invasive blood collections and laboratory analysis with low time granularity. Recent advances in sensor technology have enabled the development of personalized drug‐monitoring devices that analyze biomarker information noninvasively. Herein, based on the fact that the analyte partition onto the fingertip with a high flux, a touch‐based noninvasive monitoring modality for managing lithium pharmacotherapy is devised. The system is built based on a thin organohydrogel‐mounted lithium ion‐selective electrode (TOH‐ISE). The TOH coating provides a stable environment for sensing. Through the utilization of a water/glycerol bi‐solvent matrix, the gel exhibits dehydration‐resist properties, rendering a controlled micro‐environment for ISE conditioning, and subsequently minimizing signal drift. To illustrate the clinical application of the solution, the system is tested on a subject prescribed lithium. The system successfully detected the increase in circulating drug levels following medication intake. Collectively, the results indicate the devised solution is capable to facilitate lithium adherence monitoring and has broader potential for optimizing lithium pharmacotherapy. 
    more » « less
  4. Here, we explicitly define a half-cell reaction approach for pH calculation using the electrode couple comprised of the solid-state chloride ion-selective electrode (Cl-ISE) as the reference electrode and the hydrogen ionselective ion-sensitive field effect transistor (ISFET) of the Honeywell Durafet as the hydrogen ion (H+)-sensitive measuring or working electrode. This new approach splits and isolates the independent responses of the Cl-ISE to the chloride ion (Cl−) (and salinity) and the ISFET to H+ (and pH), and calculates pH directly on the total scale (pHEXT total) in molinity (mol (kg-soln)−1) concentration units. We further apply and compare pHEXT total calculated using the half-cell and the existing complete cell reaction (defined by Martz et al. (2010)) approaches using measurements from two SeapHOx sensors deployed in a test tank. Salinity (on the Practical Salinity Scale) and pH oscillated between 1 and 31 and 6.9 and 8.1, respectively, over a six-day period. In contrast to established Sensor Best Practices, we employ a new calibration method where the calibration of raw pH sensor timeseries are split out as needed according to salinity. When doing this, pHEXT total had root-mean squared errors ranging between ±0.0026 and ±0.0168 pH calculated using both reaction approaches relative to pHtotal of the discrete bottle samples (pHdisc total). Our results further demonstrate the rapid response of the Cl-ISE reference to variable salinity with changes up to ±12 (30 min)−1. Final calculated pHEXT total were ≤±0.012 pH when compared to pHdisc total following salinity dilution or concentration. These results are notably in contrast to those of the few in situ field deployments over similar environmental conditions that demonstrated pHEXT total calculated using the Cl-ISE as the reference electrode had larger uncertainty in nearshore waters. Therefore, additional work beyond the correction of variable temperature and salinity conditions in pH calculation using the Cl-ISE is needed to examine the effects of other external stimuli on in situ electrode response. Furthermore, whereas past work has focused on in situ reference electrode response, greater scrutiny of the ISFET as the H+-sensitive measuring electrode for pH measurement in natural waters is also needed. 
    more » « less
  5. Abstract Tissue interfaced electronics have become promising candidates for transcending beyond conventional diagnostic technology, enabling chronic, quantitative health monitoring possibilities; however, these systems have primarily relied on impenetrable materials that contribute to the mechanical and physical mismatch of bioelectronic interfaces. Inspired by the soft mechanics and physical architecture of the epidermal extracellular matrix, this study presents a 3D microporous, fibrous mesh of polydimethylsiloxane for epidermal electronics. The resulting elastic microfiber mat, exhibits a minimal mechanical footprint with analogous viscoelastic behavior, cytocompatibility, and biofluid‐permeable interface capable of small molecule, gas, and transdermal water diffusion. Electrocardiography electrodes heterogeneously integrate within the synthetic electronic‐extracellular matrix (e‐ECM) membrane and achieve chronic high resolution biopotential monitoring during typically debilitating environments (e.g., vigorous sweating) for conventional bioelectronics. The e‐ECM platform provides a substrate template for open‐mesh electronics, enabling advanced implementations in long‐term quantitative analysis monitoring for wearable and implantable devices. 
    more » « less