skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An investigation of coupled natural human systems using a two-way coupled agent-based modeling framework
Award ID(s):
1639458 1804560
PAR ID:
10388670
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Modelling & Software
Volume:
155
Issue:
C
ISSN:
1364-8152
Page Range / eLocation ID:
105451
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. The chemistry community has long sought the exact relationship between the conventional and the unitary coupled cluster ansatz for a single-reference system, especially given the interest in performing quantum chemistry on quantum computers. In this work, we show how one can use the operator manipulations given by the exponential disentangling identity and the Hadamard lemma to relate the factorized form of the unitary coupled-cluster approximation to a factorized form of the conventional coupled cluster approximation (the factorized form is required, because some amplitudes are operator-valued and do not commute with other terms). By employing the Trotter product formula, one can then relate the factorized form to the standard form of the unitary coupled cluster ansatz. The operator dependence of the factorized form of the coupled cluster approximation can also be removed at the expense of requiring even more higher-rank operators, finally yielding the conventional coupled cluster. The algebraic manipulations of this approach are daunting to carry out by hand, but can be automated on a computer for small enough systems. 
    more » « less
  3. Coupled partial differential equations (PDEs) are key tasks in modeling the complex dynamics of many physical processes. Recently, neural operators have shown the ability to solve PDEs by learning the integral kernel directly in Fourier/Wavelet space, so the difficulty for solving the coupled PDEs depends on dealing with the coupled mappings between the functions. Towards this end, we propose a coupled multiwavelets neural operator (CMWNO) learning scheme by decoupling the coupled integral kernels during the multiwavelet decomposition and reconstruction procedures in the Wavelet space. The proposed model achieves significantly higher accuracy compared to previous learning-based solvers in solving the coupled PDEs including Gray-Scott (GS) equations and the non-local mean field game (MFG) problem. According to our experimental results, the proposed model exhibits a 2ˆ „ 4ˆ improvement relative L2 error compared to the best results from the state-of-the-art models. 
    more » « less
  4. Yan Liu and Been Kim (Ed.)
    Coupled partial differential equations (PDEs) are key tasks in modeling the complex dynamics of many physical processes. Recently, neural operators have shown the ability to solve PDEs by learning the integral kernel directly in Fourier/Wavelet space, so the difficulty for solving the coupled PDEs depends on dealing with the coupled mappings between the functions. Towards this end, we propose a coupled multiwavelets neural operator (CMWNO) learning scheme by decoupling the coupled integral kernels during the multiwavelet decomposition and reconstruction procedures in the Wavelet space. The proposed model achieves significantly higher accuracy compared to previous learning-based solvers in solving the coupled PDEs including Gray-Scott (GS) equations and the non-local mean field game (MFG) problem. According to our experimental results, the proposed model exhibits a 2ˆ „ 4ˆ improvement relative L2 error compared to the best results from the state-of-the-art models. 
    more » « less