Identifying the location of a disturbance and its magnitude is an important component for stable operation of power systems. We study the problem of localizing and estimating a disturbance in the interconnected power system. We take a model-free approach to this problem by using frequency data from generators. Specifically, we develop a logistic regression based method for localization and a linear regression based method for estimation of the magnitude of disturbance. Our model-free approach does not require the knowledge of system parameters such as inertia constants and topology, and is shown to achieve highly accurate localization and estimation performance even in the presence of measurement noise and missing data.
more »
« less
The Central Role of the Identifying Assumption in Population Size Estimation
The problem of estimating the size of a population based on a subset of individuals observed across multiple data sources is often referred to as capture-recapture or multiple-systems estimation. This is fundamentally a missing data problem, where the number of unobserved individuals represents the missing data. As with any missing data problem, multiple-systems estimation requires users to make an untestable identifying assumption in order to estimate the population size from the observed data. If an appropriate identifying assumption cannot be found for a data set, no estimate of the population size should be produced based on that data set, as models with different identifying assumptions can produce arbitrarily different population size estimates—even with identical observed data fits. Approaches to multiple-systems estimation often do not explicitly specify identifying assumptions. This makes it difficult to decouple the specification of the model for the observed data from the identifying assumption and to provide justification for the identifying assumption. We present a re-framing of the multiple-systems estimation problem that leads to an approach which decouples the specification of the observed-data model from the identifying assumption, and discuss how common models fit into this framing. This approach takes advantage of existing software and facilitates various sensitivity analyses. We demonstrate our approach in a case study estimating the number of civilian casualties in the Kosovo war. Code used to produce this manuscript is available at github.com/aleshing/central-role-of-identifying-assumptions
more »
« less
- Award ID(s):
- 1852841
- PAR ID:
- 10388692
- Date Published:
- Journal Name:
- Biometrics
- ISSN:
- 1541-0420
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Understanding population dynamics is essential for achieving sustainable and productive fisheries. However, estimating recruitment in a stock assessment model involves the challenging task of identifying a self-sustaining population, which often includes representing complex geographic structure. A review of several case studies demonstrated that alternative stock assessment models can influence estimates of recruitment. Incorporating spatial population structure and connectivity into stock assessment models changed the perception of recruit- ment events for a wide diversity of fisheries, but the degree to which estimates were impacted depended on movement rates and relative stock sizes. For multiple population components, estimates of strong recruitment events and the productivity of smaller population units were often more sensitive to connectivity assumptions. Simulation testing, conditioned on these case studies, suggested that accurately accounting for population structure, either in management unit definitions or stock assessment model structure, improved recruitment estimates. An understanding of movement dynamics improved estimation of connected sub-populations. The challenge of representing geographic structure in stock assessment emphasizes the importance of defining self- sustaining management units to justify a unit-stock assumption.more » « less
-
Population size estimation techniques, such as multiple-systems or capture-recapture estimation, typically require multiple samples from the study population, in addition to the information on which individuals are included in which samples. In many contexts, these samples come from existing data sources that contain certain information on the individuals but no unique identifiers. The goal of record linkage and duplicate detection techniques is to identify unique individuals across and within samples based on the information collected on them, which might correspond to basic partial identifiers, such as given and family name, and other demographic information. Therefore, record linkage and duplicate detection are often needed to generate the input for a given population size estimation technique that a researcher might want to use. Linkage decisions, however, are subject to uncertainty when partial identifiers are limited or contain errors and missingness, and therefore, intuitively, uncertainty in the linkage and deduplication process should somehow be taken into account in the stage of population size estimation.more » « less
-
Identifying the location of a disturbance and its magnitude is an important component for stable operation of power systems.We study the problem of localizing and estimating a disturbance in the interconnected power system. We take a model-free approach to this problem by using frequency data from generators. Specifically, we develop a logistic regression based method for localization and a linear regression based method for estimation of the magnitude of disturbance. Our model-free approach does not require the knowledge of system parameters such as inertia constants and topology, and is shown to achieve highly accurate localization and estimation performance even in the presence of measurement noise and missing data.more » « less
-
Estimating and quantifying uncertainty in unknown system parameters from limited data remains a challenging inverse problem in a variety of real-world applications. While many approaches focus on estimating constant parameters, a subset of these problems includes time-varying parameters with unknown evolution models that often cannot be directly observed. This work develops a systematic particle filtering approach that reframes the idea behind artificial parameter evolution to estimate time-varying parameters in nonstationary inverse problems arising from deterministic dynamical systems. Focusing on systems modeled by ordinary differential equations, we present two particle filter algorithms for time-varying parameter estimation: one that relies on a fixed value for the noise variance of a parameter random walk; another that employs online estimation of the parameter evolution noise variance along with the time-varying parameter of interest. Several computed examples demonstrate the capability of the proposed algorithms in estimating time-varying parameters with different underlying functional forms and different relationships with the system states (i.e. additive vs. multiplicative).more » « less
An official website of the United States government

