skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: When artificial parameter evolution gets real: particle filtering for time-varying parameter estimation in deterministic dynamical systems
Estimating and quantifying uncertainty in unknown system parameters from limited data remains a challenging inverse problem in a variety of real-world applications. While many approaches focus on estimating constant parameters, a subset of these problems includes time-varying parameters with unknown evolution models that often cannot be directly observed. This work develops a systematic particle filtering approach that reframes the idea behind artificial parameter evolution to estimate time-varying parameters in nonstationary inverse problems arising from deterministic dynamical systems. Focusing on systems modeled by ordinary differential equations, we present two particle filter algorithms for time-varying parameter estimation: one that relies on a fixed value for the noise variance of a parameter random walk; another that employs online estimation of the parameter evolution noise variance along with the time-varying parameter of interest. Several computed examples demonstrate the capability of the proposed algorithms in estimating time-varying parameters with different underlying functional forms and different relationships with the system states (i.e. additive vs. multiplicative).  more » « less
Award ID(s):
1819203
PAR ID:
10471244
Author(s) / Creator(s):
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Inverse Problems
Volume:
39
Issue:
1
ISSN:
0266-5611
Page Range / eLocation ID:
014002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Many real-world systems modeled using differential equations involve unknown or uncertain parameters. Standard approaches to address parameter estimation inverse problems in this setting typically focus on estimating constants; yet some unobservable system parameters may vary with time without known evolution models. In this work, we propose a novel approximation method inspired by the Fourier series to estimate time-varying parameters in deterministic dynamical systems modeled with ordinary differential equations. Using ensemble Kalman filtering in conjunction with Fourier series-based approximation models, we detail two possible implementation schemes for sequentially updating the time-varying parameter estimates given noisy observations of the system states. We demonstrate the capabilities of the proposed approach in estimating periodic parameters, both when the period is known and unknown, as well as non-periodic time-varying parameters of different forms with several computed examples using a forced harmonic oscillator. Results emphasize the importance of the frequencies and number of approximation model terms on the time-varying parameter estimates and corresponding dynamical system predictions. 
    more » « less
  2. Estimating and quantifying uncertainty in system parameters remains a big challenge in applied and computational mathematics. A subset of these problems includes estimating periodic parameters that have unknown dynamics. Along with their time series, the period of these parameters may also be unknown and need to be estimated. The aim of this paper is to address the periodic parameter estimation problem, with particular focus on exploring the associated uncertainty, using Monte Carlo particle methods, such as the ensemble Kalman filter. Both parameter tracking and piecewise function approximations of periodic parameters are considered, highlighting aspects of parameter uncertainty in each approach when considering factors such as the frequency of available data and the number of piecewise segments used in the approximation. Estimation of the period of the periodic parameters and related uncertainty is also analyzed in the piecewise formulation. The pros and cons of each approach are discussed relative to a numerical example estimating the external voltage parameter in the FitzHugh-Nagumo system for modeling the spiking dynamics of neurons. 
    more » « less
  3. Baseband processing algorithms often require knowledge of the noise power, signal power, or signal-to-noise ratio (SNR). In practice, these parameters are typically unknown and must be estimated. Furthermore, the mean-square error (MSE) is a desirable metric to be minimized in a variety of estimation and signal recovery algorithms. However, the MSE cannot directly be used as it depends on the true signal that is generally unknown to the estimator. In this paper, we propose novel blind estimators for the average noise power, average receive signal power, SNR, and MSE. The proposed estimators can be computed at low complexity and solely rely on the large-dimensional and sparse nature of the processed data. Our estimators can be used (i) to quickly track some of the key system parameters while avoiding additional pilot overhead, (ii) to design low-complexity nonparametric algorithms that require such quantities, and (iii) to accelerate more sophisticated estimation or recovery algorithms. We conduct a theoretical analysis of the proposed estimators for a Bernoulli complex Gaussian (BCG) prior, and we demonstrate their efficacy via synthetic experiments. We also provide three application examples that deviate from the BCG prior in millimeter-wave multi-antenna and cell-free wireless systems for which we develop nonparametric denoising algorithms that improve channel-estimation accuracy with a performance comparable to denoisers that assume perfect knowledge of the system parameters. 
    more » « less
  4. This study explores how uncertainty in time-varying parameter estimates obtained using nonlinear filtering algorithms with parameter tracking affects corresponding model output predictions. Results are demonstrated on a numerical example estimating the time-varying external voltage parameter in the FitzHugh-Nagumo system for modeling the spiking dynamics of neurons. 
    more » « less
  5. SUMMARY Inverse problems play a central role in data analysis across the fields of science. Many techniques and algorithms provide parameter estimation including the best-fitting model and the parameters statistics. Here, we concern ourselves with the robustness of parameter estimation under constraints, with the focus on assimilation of noisy data with potential outliers, a situation all too familiar in Earth science, particularly in analysis of remote-sensing data. We assume a linear, or linearized, forward model relating the model parameters to multiple data sets with a priori unknown uncertainties that are left to be characterized. This is relevant for global navigation satellite system and synthetic aperture radar data that involve intricate processing for which uncertainty estimation is not available. The model is constrained by additional equalities and inequalities resulting from the physics of the problem, but the weights of equalities are unknown. We formulate the problem from a Bayesian perspective with non-informative priors. The posterior distribution of the model parameters, weights and outliers conditioned on the observations are then inferred via Gibbs sampling. We demonstrate the practical utility of the method based on a set of challenging inverse problems with both synthetic and real space-geodetic data associated with earthquakes and nuclear explosions. We provide the associated computer codes and expect the approach to be of practical interest for a wide range of applications. 
    more » « less