Animals often communicate in complex, heterogeneous environments, leading to hypothesized selection for increased detectability or discriminability in signaling traits. The extent to which secondary sexual ornaments have evolved to overcome the challenges of signaling in complex environments, however, remains understudied, especially in comparison to their role as indicator traits. This study tested the hypothesis that the condition-dependent secondary sexual ornamentation in the wolf spider Rabidosa rabida functions to increase detectability/discriminability in visually complex environments. We predicted that male ornamentation would interact with the complexity of the signaling environment to affect male mating success. In particular, we expected ornaments to confer a greater mating advantage when males courted in visually complex environments. To test this, we artificially manipulated male foreleg ornamentation (present/absent) and ran repeated-measures mating trials across laboratory microcosms that represented simple versus complex visual signaling environments. Microcosm visual complexity differed in their background pattern, grass stem color, and grass stem placement. We found that ornamented males mated more often and more quickly than unornamented males across both environments, but we found no support for an ornament-by-environment interaction. Male courtship rate, however, did interact with the signaling environment. Despite achieving the same level of mating success across signaling environments,more »
The hydration state of animals vying for reproductive success may have implications for the tempo and mode of sexual selection, which may be salient in populations that experience increasing environmental fluctuations in water availability. Using red-sided garter snakes as a model system, we tested the effect of water supplementation on courtship, mating behavior, and copulatory plug (CP) production during a drought year. Over 3 days of mating trials, water-supplemented males (WET males, n = 45) outperformed a control group that was not supplemented with water (DRY males, n = 45). Over 70% of WET males mated but just 33% of DRY males did so. As a group, WET males mated 79 times versus 28 times by DRY males. On the last day of mating trials, over 70% of WET males were still courting, with 19 of them mating, whereas less than 25% of DRY males were courting and only one mated. CP deposition accounted for 4–6% of the mass lost by mating males, but hydration did not affect CP mass or water content. These findings suggest that, in years of low water availability, the number of courting males and the intensity of their courtship declines, thereby affecting sexual selection more »
- Publication Date:
- NSF-PAR ID:
- 10388760
- Journal Name:
- Behavioral Ecology
- Volume:
- 33
- Issue:
- 2
- Page Range or eLocation-ID:
- p. 436-445
- ISSN:
- 1045-2249
- Publisher:
- Oxford University Press
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Background Ever since Darwin, evolutionary biologists have studied sexual selection driving differences in appearance and behaviour between males and females. An unchallenged paradigm in such studies is that one sex (usually the male) signals its quality as a mate to the other sex (usually the female), who is choosy in accepting a partner. Here, we hypothesize that in polygamous species these roles change dynamically with the mating status of males and females, depending on direct reproductive costs and benefits of multiple matings, and on sperm competition. We test this hypothesis by assessing fitness costs and benefits of multiple matings in both males and females in a polygamous moth species, as in moths not males but females are the signalers and males are the responders.
Results We found that multiple matings confer fitness costs and benefits for both sexes. Specifically, the number of matings did not affect the longevity of males or females, but only 67% of the males and 14% of the females mated successfully in all five nights. In addition, the female’s reproductive output increased with multiple matings, although when paired with a new virgin male every night, more than 3 matings decreased her reproductive output, so that the Batemanmore »
Conclusion Our results suggest that choosiness in moths may well change throughout the mating season, with males being more choosy early in the season and females being more choosy after having mated at least three times. This life-history perspective on the costs and benefits of multiple matings for both sexes sheds new light on sexual selection forces acting on sexual signals and responses.
-
Synopsis Sound production in tiger moths (Erebidae: Arctiinae) plays a role in natural selection. Some species use tymbal sounds as jamming signals avoiding bat predation. High duty cycle signals have the greatest efficacy in this regard. Tiger moth sounds can also be used for intraspecific communication. Little is known about the role of sound in the mating behavior of jamming species or the signal preferences underlying mate choice. We recorded sound production during the courtship of two high duty cycle arctiines, Bertholdia trigona and Carales arizonensis. We characterized variation in their acoustic signals, measured female preference for male signals that vary in duty cycle, and performed female choice experiments to determine the effect of male duty cycle on the acceptance of male mates. Although both species produced sound during courtship, the role of acoustic communication appears different between the species. Bertholdia trigona was acoustically active in all intraspecific interactions. Females preferred and ultimately mated with males that produced higher duty cycles. Muted males were never chosen. In C. arizonensis however, sound emissions were limited during courtship and in some successful matings no sound was detected. Muted and clicking males were equally successful in female mate-choice experiments, indicating that acoustic communicationmore »
-
Abstract Animal signals experience selection for detectability, which is determined in large part by the signal transmission properties of the habitat. Understanding the ecological context in which communication takes place is therefore critical to understanding selection on the form of communication signals. In order to determine the influence of environmental heterogeneity on signal transmission, we focus on a wolf spider species native to central Florida, Schizocosa floridana, in which males court females using a substrate-borne vibratory song. We test the hypothesis that S. floridana is a substrate specialist by 1) assessing substrate use by females and males in the field, 2) quantifying substrate-specific vibratory signal transmission in the laboratory, and 3) determining substrate-specific mating success in the laboratory. We predict a priori that 1) S. floridana restricts its signaling to oak litter, 2) oak litter best transmits their vibratory signal, and 3) S. floridana mates most readily on oak litter. We find that S. floridana is almost exclusively found on oak litter, which was found to attenuate vibratory courtship signals the least. Spiders mated with equal frequency on oak and pine, but did not mate at all on sand. Additionally, we describe how S. floridana song contains a novel component,more »
-
BACKGROUND Charles Darwin’s Descent of Man, and Selection in Relation to Sex tackled the two main controversies arising from the Origin of Species: the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on howmore »