skip to main content


Title: Mining High-Level Imaging Genetic Associations via Clustering AD Candidate Variants with Similar Brain Association Patterns
Brain imaging genetics examines associations between imaging quantitative traits (QTs) and genetic factors such as single nucleotide polymorphisms (SNPs) to provide important insights into the pathogenesis of Alzheimer’s disease (AD). The individual level SNP-QT signals are high dimensional and typically have small effect sizes, making them hard to be detected and replicated. To overcome this limitation, this work proposes a new approach that identifies high-level imaging genetic associations through applying multigraph clustering to the SNP-QT association maps. Given an SNP set and a brain QT set, the association between each SNP and each QT is evaluated using a linear regression model. Based on the resulting SNP-QT association map, five SNP–SNP similarity networks (or graphs) are created using five different scoring functions, respectively. Multigraph clustering is applied to these networks to identify SNP clusters with similar association patterns with all the brain QTs. After that, functional annotation is performed for each identified SNP cluster and its corresponding brain association pattern. We applied this pipeline to an AD imaging genetic study, which yielded promising results. For example, in an association study between 54 AD SNPs and 116 amyloid QTs, we identified two SNP clusters with one responsible for amyloid beta clearances and the other regulating amyloid beta formation. These high-level findings have the potential to provide valuable insights into relevant genetic pathways and brain circuits, which can help form new hypotheses for more detailed imaging and genetics studies in independent cohorts.  more » « less
Award ID(s):
1837964
NSF-PAR ID:
10388910
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Genes
Volume:
13
Issue:
9
ISSN:
2073-4425
Page Range / eLocation ID:
1520
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    In Alzheimer’s Diseases (AD) research, multimodal imaging analysis can unveil complementary information from multiple imaging modalities and further our understanding of the disease. One application is to discover disease subtypes using unsupervised clustering. However, existing clustering methods are often applied to input features directly, and could suffer from the curse of dimensionality with high-dimensional multimodal data. The purpose of our study is to identify multimodal imaging-driven subtypes in Mild Cognitive Impairment (MCI) participants using a multiview learning framework based on Deep Generalized Canonical Correlation Analysis (DGCCA), to learn shared latent representation with low dimensions from 3 neuroimaging modalities.

    Results

    DGCCA applies non-linear transformation to input views using neural networks and is able to learn correlated embeddings with low dimensions that capture more variance than its linear counterpart, generalized CCA (GCCA). We designed experiments to compare DGCCA embeddings with single modality features and GCCA embeddings by generating 2 subtypes from each feature set using unsupervised clustering. In our validation studies, we found that amyloid PET imaging has the most discriminative features compared with structural MRI and FDG PET which DGCCA learns from but not GCCA. DGCCA subtypes show differential measures in 5 cognitive assessments, 6 brain volume measures, and conversion to AD patterns. In addition, DGCCA MCI subtypes confirmed AD genetic markers with strong signals that existing late MCI group did not identify.

    Conclusion

    Overall, DGCCA is able to learn effective low dimensional embeddings from multimodal data by learning non-linear projections. MCI subtypes generated from DGCCA embeddings are different from existing early and late MCI groups and show most similarity with those identified by amyloid PET features. In our validation studies, DGCCA subtypes show distinct patterns in cognitive measures, brain volumes, and are able to identify AD genetic markers. These findings indicate the promise of the imaging-driven subtypes and their power in revealing disease structures beyond early and late stage MCI.

     
    more » « less
  2. Brain imaging genetics is an important research topic in brain science, which combines genetic variations and brain structures or functions to uncover the genetic basis of brain disorders. Imaging data collected by different technologies, measuring the same brain distinctly, might carry complementary but different information. Unfortunately, we do not know the extent to which phenotypic variance is shared among multiple imaging modalities, which might trace back to the complex genetic mechanism. In this study, we propose a novel dirty multi-task SCCA to analyze imaging genetics problems with multiple modalities of brain imaging quantitative traits (QTs) involved. The proposed method can not only identify the shared SNPs and QTs across multiple modalities, but also identify the modality-specific SNPs and QTs, showing a flexible capability of discovering the complex multi-SNP-multi-QT associations. Compared with the multi-view SCCA and multi-task SCCA, our method shows better canonical correlation coefficients and canonical weights on both synthetic and real neuroimaging genetic data. This demonstrates that the proposed dirty multi-task SCCA could be a meaningful and powerful alternative method in multi-modal brain imaging genetics. 
    more » « less
  3. Brain imaging genetics aims to reveal genetic effects on brain phenotypes, where most studies examine phenotypes defined on anatomical or functional regions of interest (ROIs) given their biologically meaningful annotation and modest dimensionality compared with voxel-wise approaches. Typical ROI-level measures used in these studies are summary statistics from voxel-wise measures in the region, without making full use of individual voxel signals. In this paper, we propose a flexible and powerful framework for mining regional imaging genetic associations via voxel-wise enrichment analysis, which embraces the collective effect of weak voxel-level signals within an ROI. We demonstrate our method on an imaging genetic analysis using data from the Alzheimers Disease Neuroimaging Initiative, where we assess the collective regional genetic effects of voxel-wise FDG-PET measures between 116 ROIs and 19 AD candidate SNPs. Compared with traditional ROI-wise and voxel-wise approaches, our method identified 102 additional significant associations, some of which were further supported by evidences in brain tissue-specific expression analysis. This demonstrates the promise of the proposed method as a flexible and powerful framework for exploring imaging genetic effects on the brain. 
    more » « less
  4. Abstract Background There is growing evidence indicating that a number of functional connectivity networks are disrupted at each stage of the full clinical Alzheimer’s disease spectrum. Such differences are also detectable in cognitive normal (CN) carrying mutations of AD risk genes, suggesting a substantial relationship between genetics and AD-altered functional brain networks. However, direct genetic effect on functional connectivity networks has not been measured. Methods Leveraging existing AD functional connectivity studies collected in NeuroSynth, we performed a meta-analysis to identify two sets of brain regions: ones with altered functional connectivity in resting state network and ones without. Then with the brain-wide gene expression data in the Allen Human Brain Atlas, we applied a new biclustering method to identify a set of genes with differential co-expression patterns between these two set of brain regions. Results Differential co-expression analysis using biclustering method led to a subset of 38 genes which showed distinctive co-expression patterns between AD-related and non AD-related brain regions in default mode network. More specifically, we observed 4 sub-clusters with noticeable co-expression difference, where the difference in correlations is above 0.5 on average. Conclusions This work applies a new biclustering method to search for a subset of genes with altered co-expression patterns in AD-related default mode network regions. Compared with traditional differential expression analysis, differential co-expression analysis yielded many more significant hits with extra insights into the wiring mechanism between genes. Particularly, the differential co-expression pattern was observed between two sets of genes, suggesting potential upstream genetic regulators in AD development. 
    more » « less
  5. Abstract Background Alzheimer’s disease (AD) is a complex neurodegenerative disorder and the most common type of dementia. AD is characterized by a decline of cognitive function and brain atrophy, and is highly heritable with estimated heritability ranging from 60 to 80 $$\%$$ % . The most straightforward and widely used strategy to identify AD genetic basis is to perform genome-wide association study (GWAS) of the case-control diagnostic status. These GWAS studies have identified over 50 AD related susceptibility loci. Recently, imaging genetics has emerged as a new field where brain imaging measures are studied as quantitative traits to detect genetic factors. Given that many imaging genetics studies did not involve the diagnostic outcome in the analysis, the identified imaging or genetic markers may not be related or specific to the disease outcome. Results We propose a novel method to identify disease-related genetic variants enriched by imaging endophenotypes, which are the imaging traits associated with both genetic factors and disease status. Our analysis consists of three steps: (1) map the effects of a genetic variant (e.g., single nucleotide polymorphism or SNP) onto imaging traits across the brain using a linear regression model, (2) map the effects of a diagnosis phenotype onto imaging traits across the brain using a linear regression model, and (3) detect SNP-diagnosis association via correlating the SNP effects with the diagnostic effects on the brain-wide imaging traits. We demonstrate the promise of our approach by applying it to the Alzheimer’s Disease Neuroimaging Initiative database. Among 54 AD related susceptibility loci reported in prior large-scale AD GWAS, our approach identifies 41 of those from a much smaller study cohort while the standard association approaches identify only two of those. Clearly, the proposed imaging endophenotype enriched approach can reveal promising AD genetic variants undetectable using the traditional method. Conclusion We have proposed a novel method to identify AD genetic variants enriched by brain-wide imaging endophenotypes. This approach can not only boost detection power, but also reveal interesting biological pathways from genetic determinants to intermediate brain traits and to phenotypic AD outcomes. 
    more » « less