skip to main content


Title: The December 2021 Marshall Fire: Predictability and Gust Forecasts from Operational Models
We analyzed meteorological conditions that occurred during the December 2021 Boulder, Colorado, downslope windstorm. This event is of particular interest due to the ignition and spread of the Marshall Fire, which quickly became the most destructive wildfire in Colorado history. Observations indicated a rapid onset of fast winds with gusts as high as 51 m/s that generally remained confined to the east-facing slopes and foothills of the Rockies, similar to previous Boulder windstorms. After about 12 h, the windstorm shifted into a second, less intense phase. Midtropospheric winds above northwestern Colorado weakened prior to the onset of strong surface winds and the event strength started waning as stronger winds moved back into the area. Forecasts from NOAA high-resolution operational models initialized more than a few hours prior to windstorm onset did not simulate the start time, development rate and/or maximum strength of the windstorm correctly, and day-ahead runs even failed to develop strong downslope windstorms at all. Idealized modeling confirmed that predictability was limited by errors on the synoptic scale affecting the midtropospheric wind conditions representing the Boulder windstorm’s inflow environment. Gust forecasts for this event were critically evaluated.  more » « less
Award ID(s):
1921546
NSF-PAR ID:
10389152
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Atmosphere
Volume:
13
Issue:
5
ISSN:
2073-4433
Page Range / eLocation ID:
765
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The November 2018 Camp Fire quickly became the deadliest and most destructive wildfire in California history. In this case study, we investigate the contribution of meteorological conditions and, in particular, a downslope windstorm that occurred during the 2018 Camp Fire. Dry seasonal conditions prior to ignition led to 100-h fuel moisture contents in the region to reach record low levels. Meteorological observations were primarily made from a number of remote automatic weather stations and a mobile scanning Doppler lidar deployed to the fire on 8 November 2018. Additionally, gridded operational forecast models and high-resolution meteorological simulations were synthesized in the analysis to provide context for the meteorological observations and structure of the downslope windstorm. Results show that this event was associated with mid-level anti-cyclonic Rossby wave breaking likely caused by cold air advection aloft. An inverted surface trough over central California created a pressure gradient which likely enhanced the downslope winds. Sustained surface winds between 3–6 m s−1 were observed with gusts of over 25 m s−1 while winds above the surface were associated with an intermittent low-level jet. The meteorological conditions of the event were well forecasted, and the severity of the fire was not surprising given the fire danger potential for that day. However, use of surface networks alone do not provide adequate observations for understanding downslope windstorm events and their impact on fire spread. Fire management operations may benefit from the use of operational wind profilers to better understand the evolution of downslope windstorms and other fire weather phenomena that are poorly understood and observed. 
    more » « less
  2. Abstract

    Strong downslope windstorms can cause extensive property damage and extreme wildfire spread, so their accurate prediction is important. Although some early studies suggested high predictability for downslope windstorms, more recent analyses have found limited predictability for such winds. Nevertheless, there is a theoretical basis for expecting higher downslope wind predictability in cases with a mean-state critical level, and this is supported by one previous effort to forecast actual events. To more thoroughly investigate downslope windstorm predictability, we compare archived simulations from the NCAR ensemble, a 10-member mesoscale ensemble run at 3-km horizontal grid spacing over the entire contiguous United States, to observed events at 15 stations in the western United States susceptible to strong downslope winds. We assess predictability in three contexts: the average ensemble spread, which provides an estimate of potential predictability; a forecast evaluation based upon binary-decision criteria, which is representative of operational hazard warnings; and a probabilistic forecast evaluation using the continuous ranked probability score (CRPS), which is a measure of an ensemble’s ability to generate the proper probability distribution for the events under consideration. We do find better predictive skill for the mean-state critical-level regime in comparison to other downslope windstorm–generating mechanisms. Our downslope windstorm warning performance, calculated using binary-decision criteria from the bias-corrected ensemble forecasts, performed slightly worse for no-critical-level events, and slightly better for critical-level events, than National Weather Service high-wind warnings aggregated over all types of high-wind events throughout the United States and annually averaged for each year between 2008 and 2019.

     
    more » « less
  3. Abstract

    On 25 December 2016, a 984-hPa cyclone departed Colorado and moved onto the northern plains, drawing a nearby Arctic front into the circulation and wrapping it cyclonically around the equatorward side of the cyclone. A 130-km-wide and 850-km-long swath of surface winds exceeding 25 m s−1 originated underneath the comma head of the lee cyclone and followed the track of the Arctic front from Colorado to Minnesota. These strong winds formed in association with a downslope windstorm and mountain wave over Colorado and Wyoming, producing an elevated jet of strong winds. Central to the distribution of winds in this case is the Arctic air mass, which both shielded the elevated winds from surface friction behind the front and facilitated the mixing of the elevated jet down to the surface just behind the Arctic front, due to steep lapse rates associated with cold-air advection. The intense circulation south of the cyclone center transported the Arctic front and the elevated jet away from the mountains and out across Great Plains. This case is compared to an otherwise similar cyclone that occurred on 28–29 February 2012 in which a downslope windstorm occurred, but no surface mesoscale wind maximum formed due to the absence of a well-defined Arctic front and postfrontal stable layer. Despite the superficial similarities of this surface wind maximum to a sting jet (e.g., origin in the midtroposphere within the comma head of the cyclone, descent evaporating the comma head, acceleration to the top of the boundary layer, and an existence separate from the cold conveyor belt), this swath of winds was not caused by a sting jet.

     
    more » « less
  4. Abstract

    The impact of upstream terrain on the diurnal variability of downslope windstorms on the south‐facing slopes of the Santa Ynez Mountains (SYM) is investigated using numerical simulations. These windstorms, called Sundowners due to their typical onset around sunset, have intensified all major wildfires in the area. This study investigates the role of the orography upstream of the SYM in the diurnal behavior of Sundowners. Two types of Sundowners are examined: western sundowners (winds with dominant northwesterly direction) and eastern Sundowners (winds with dominant northeasterly direction). By using semi‐idealized simulations, in which we progressively reduce the upstream terrain, we show that the onset of the lee slope jet occurs in the late afternoon only when the flow approaches the SYM from the northeast, after interacting with a considerably higher mountain barrier. We demonstrate that during the eastern regime, the progressive reduction of the upstream terrain results in strong lee slope winds throughout the day. Conversely, the diurnal cycle of downslope winds during the western regime is less sensitive to the reduction of the upstream terrain. The Sundowner diurnal cycle during the eastern regime can be explained by boundary‐layer processes in the valley and the blocking effect of high mountains upstream of the SYM. These results contribute to a better understanding of the influence of upstream orography in the cycle and intensity of downslope windstorms in coastal mountains.

     
    more » « less
  5. Abstract

    An unprecedented heat wave occurred over the Pacific Northwest and southwest Canada on 25–30 June 2021, resulting in all-time temperature records that greatly exceeded previous record maximum temperatures. The impacts were substantial, including several hundred deaths, thousands of hospitalizations, a major wildfire in Lytton, British Columbia, Canada, and severe damage to regional vegetation. Several factors came together to produce this extreme event: a record-breaking midtropospheric ridge over British Columbia in the optimal location, record-breaking midtropospheric temperatures, strong subsidence in the lower atmosphere, low-level easterly flow that produced downslope warming on regional terrain and the removal of cooler marine air, an approaching low-level trough that enhanced downslope flow, the occurrence at a time of maximum insolation, and drier-than-normal soil moisture. It is shown that all-time-record temperatures have not become more frequent and that annual high temperatures only increased at the rate of baseline global warming. Although anthropogenic warming may have contributed as much as 1°C to the event, there is little evidence of further amplification from increasing greenhouse gases. Weather forecasts were excellent for this event, with highly accurate predictions of the extreme temperatures.

    Significance Statement

    This paper describes the atmospheric evolution that produced an extreme heat wave over the Pacific Northwest during June 2021 and puts this event into historical perspective.

     
    more » « less