Toward the end of his career, Zewail developed strong interest in fast electron spectroscopy and imaging, a field to which he made important contributions toward his aim of making molecular movies free of radiation damage. We therefore compare here the atomistic mechanisms leading to destruction of protein samples in diffract-and-destroy experiments for the cases of high-energy electron beam irradiation and X-ray laser pulses. The damage processes and their time-scales are compared and relevant elastic, inelastic, and photoelectron cross sections are given. Inelastic mean-free paths for ejected electrons at very low energies in insulators are compared with the bioparticle size. The dose rate and structural damage rate for electrons are found to be much lower, allowing longer pulses, reduced beam current, and Coulomb interactions for the formation of smaller probes. High-angle electron scattering from the nucleus, which has no parallel in the X-ray case, tracks the slowly moving nuclei during the explosion, just as the gain of the XFEL (X-ray free-electron laser) has no parallel in the electron case. Despite reduced damage and much larger elastic scattering cross sections in the electron case, leading to not dissimilar elastic scattering rates (when account is taken of the greatly increased incident XFEL fluence), progress for single-particle electron diffraction is seen to depend on the effort to reduce emittance growth due to Coulomb interactions, and so allow formation of intense sub-micron beams no larger than a virus.
more »
« less
Molecular collisions, photoionization and dynamics: honoring Professor Vincent McKoy M. H. F. Bettega, S. J. Buckman, M. Khakoo, P. Limão-Vieira and M. T. do N. Varella, EPJD, 76:65 (2022). https://doi.org/10.1140/epjd/s10053-022-00391-w
The topical issue “Advances on Molecular Collisions, Photoionization and Dynamics” encompasses a set of theoretical and experimental contributions honouring the unprecedented scientific career of our loyal colleague and trusted friend the late Professor Vincent McKoy. He has been a pioneer in implementing ab initio electron-molecule scattering and molecular photoionization theoretical methods, alongside with his collaborations across the globe, having contributed to different research fields that are now well-established and where he leaves a strong scientific legacy as noted by the testimony of his long-lasting collaborator, Carl Winstead. The contributions hereafter are related to the most recent achievements in electron interactions with molecules and molecular ions as a function of phase and stage of aggregation as well as key aspects of photoionization mechanisms therein. Particular topics include studies of photon and electron interactions (excitation, ionization and attachment) with biological, technological, astrophysical and aeronomic relevant molecules, electron transport phenomena and electron induced surface chemistry. Theoretical aspects of model potentials and molecular processes including nonadiabatic chemical reactions are also addressed in this special occasion.
more »
« less
- Award ID(s):
- 1911702
- PAR ID:
- 10389155
- Date Published:
- Journal Name:
- The European physical journal D Atomic molecular and optical physics
- Volume:
- 76
- Issue:
- 65
- ISSN:
- 1434-6060
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
First-principles calculations of defects and electron–phonon interactions play a critical role in the design and optimization of materials for electronic and optoelectronic devices. The late Audrius Alkauskas made seminal contributions to developing rigorous first-principles methodologies for the computation of defects and electron–phonon interactions, especially in the context of understanding the fundamental mechanisms of carrier recombination in semiconductors. Alkauskas was also a pioneer in the field of quantum defects, helping to build a first-principles understanding of the prototype nitrogen-vacancy center in diamond, as well as identifying novel defects. Here, we describe the important contributions made by Alkauskas and his collaborators and outline fruitful research directions that Alkauskas would have been keen to pursue. Audrius Alkauskas’ scientific achievements and insights highlighted in this article will inspire and guide future developments and advances in the field.more » « less
-
Procter, J (Ed.)Molecular visualization is a powerful way to represent the complex structure of molecules and their higher order assemblies, as well as the dynamics of their interactions. Although conventions for depicting static molecular structures and complexes are now well established and guide the viewer’s attention to specific aspects of structure and function, little attention and design classification has been devoted to how molecular motion is depicted. As we continue to probe and discover how molecules move - including their internal flexibility, conformational changes and dynamic associations with binding partners and environments - we are faced with difficult design challenges that are relevant to molecular visualizations both for the scientific community and students of cell and molecular biology. To facilitate these design decisions, we have identified twelve molecular animation design principles that are important to consider when creating molecular animations. Many of these principles pertain to misconceptions that students have primarily regarding the agency of molecules, while others are derived from visual treatments frequently observed in molecular animations that may promote misconceptions. For each principle, we have created a pair of molecular animations that exemplify the principle by depicting the same content in the presence and absence of that design approach. Although not intended to be prescriptive, we hope this set of design principles can be used by the scientific, education, and scientific visualization communities to facilitate and improve the pedagogical effectiveness of molecular animation.more » « less
-
“It ain’t necessarily so” – A favored mantra recited by R. K. Trench in the context of “received truth,” or established beliefs; and the title of his unfinished autobiography. Professor Robert (Bob) Kent Trench’s research career brought together multiple disciplines in the study of mutualistic symbioses that are crucial to understanding the physiology, ecology, and co-evolution of metazoan and protist associations, many of which are beneficial to the Earth’s biosphere. Through the development and use of complementary techniques, he pioneered important discoveries about metabolically coupled interactions between “plants” and animals. Having grown up in Belize (formerly British Honduras), his journey in academia started at the University College of the West Indies (UCWI) on the island nation of Jamaica, then proceeded to the University of California, Los Angeles (USA); Oxford University (UK); and Yale University (Connecticut, USA). He was a longtime faculty member in the Department of Ecology, Evolution and Marine Biology at the University of California, Santa Barbara (Figs. 1a–f). Over the course of his life (August 3 1940–April 27 2021), he recognized that many things presented as fact were often accumulated dogma. His direct application of the scientific method ultimately helped to change these misconceptions. By deconstructing established ‘beliefs,’ he greatly improved our understanding of several mutualistic symbioses, and many of his insights and hypotheses published decades ago remain at the forefront of intense investigation to this day.more » « less
-
Since its initial development in the 1970s by Phil Burke and his collaborators, the R-matrix theory and associated computer codes have become the method of choice for the calculation of accurate data for general electron–atom/ion/molecule collision and photoionization processes. The use of a non-orthogonal set of orbitals based on B-splines, now called the B-spline R-matrix (BSR) approach, was pioneered by Zatsarinny. It has considerably extended the flexibility of the approach and improved particularly the treatment of complex many-electron atomic and ionic targets, for which accurate data are needed in many modelling applications for processes involving low-temperature plasmas. Both the original R-matrix approach and the BSR method have been extended to the interaction of short, intense electromagnetic (EM) radiation with atoms and molecules. Here, we provide an overview of the theoretical tools that were required to facilitate the extension of the theory to the time domain. As an example of a practical application, we show results for two-photon ionization of argon by intense short-pulse extreme ultraviolet radiation.more » « less
An official website of the United States government

