Analytic fits to the recommended electron-impact excitation and ionization cross sections for Be I are presented. The lowest 19 terms of configurations 2snl (n≤4) and 2p2 terms below the first ionization limit are considered. The fits are based on the accurate calculations with the convergent close coupling (CCC) method as well as the B-spline R-matrix (BSR) approach. The fitted cross sections provide rate coefficients that are believed to approximate the original data within 10% with very few exceptions. The oscillator strengths for the dipole-allowed transitions between all the considered states are calculated with the relativistic multi-configuration Dirac–Hartree–Fock (MCDHF) approach and compared with the CCC and BSR results. This comparison shows a very good agreement except for a handful of cases with likely strong cancellations.
more »
« less
Generalizations of the R-Matrix Method to the Treatment of the Interaction of Short-Pulse Electromagnetic Radiation with Atoms
Since its initial development in the 1970s by Phil Burke and his collaborators, the R-matrix theory and associated computer codes have become the method of choice for the calculation of accurate data for general electron–atom/ion/molecule collision and photoionization processes. The use of a non-orthogonal set of orbitals based on B-splines, now called the B-spline R-matrix (BSR) approach, was pioneered by Zatsarinny. It has considerably extended the flexibility of the approach and improved particularly the treatment of complex many-electron atomic and ionic targets, for which accurate data are needed in many modelling applications for processes involving low-temperature plasmas. Both the original R-matrix approach and the BSR method have been extended to the interaction of short, intense electromagnetic (EM) radiation with atoms and molecules. Here, we provide an overview of the theoretical tools that were required to facilitate the extension of the theory to the time domain. As an example of a practical application, we show results for two-photon ionization of argon by intense short-pulse extreme ultraviolet radiation.
more »
« less
- PAR ID:
- 10317818
- Date Published:
- Journal Name:
- Atoms
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2218-2004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Atomic, Molecular, and Optical Science (AMOS) Gateway is a comprehensive cyberinfrastructure for research and educational activities in computational AMO science. The B-Spline atomic R-Matrix (BSR) suite of programs is one of several computer programs currently available on the gateway. It is an excellent example of the gateway’s potential to increase the scientific productivity of AMOS users. While the suite is available to be used in batch mode, its complexity does not make it well-suited to the approach taken in the gateway’s default setup. The complexity originates from the need to execute many different computations and to construct generally complex workflows, requiring numerous input files that must be used in a specific sequence. The BSR graphical user interface described in this paper was developed to considerably simplify employing the BSR codes on the gateway, making BSR available to a large group of researchers and students interested in AMO science.more » « less
-
null (Ed.)We have applied the full-relativistic Dirac B-Spline R-matrix method to obtain cross sections for electron scattering from ytterbium atoms. The results are compared with those obtained from a semi-relativistic (Breit-Pauli) model-potential approach and the few available experimental data.more » « less
-
Abstract Energetic electron precipitation from Earth’s outer radiation belt heats the upper atmosphere and alters its chemical properties. The precipitating flux intensity, typically modelled using inputs from high-altitude, equatorial spacecraft, dictates the radiation belt’s energy contribution to the atmosphere and the strength of space-atmosphere coupling. The classical quasi-linear theory of electron precipitation through moderately fast diffusive interactions with plasma waves predicts that precipitating electron fluxes cannot exceed fluxes of electrons trapped in the radiation belt, setting an apparent upper limit for electron precipitation. Here we show from low-altitude satellite observations, that ~100 keV electron precipitation rates often exceed this apparent upper limit. We demonstrate that such superfast precipitation is caused by nonlinear electron interactions with intense plasma waves, which have not been previously incorporated in radiation belt models. The high occurrence rate of superfast precipitation suggests that it is important for modelling both radiation belt fluxes and space-atmosphere coupling.more » « less
-
Abstract Energetic electron precipitation into Earth's atmosphere is an important process for radiation belt dynamics and magnetosphere‐ionosphere coupling. The most intense form of such precipitation is microbursts—short‐lived bursts of precipitating fluxes detected on low‐altitude spacecraft. Due to the wide energy range of microbursts (from sub‐relativistic to relativistic energies) and their transient nature, they are thought to be predominantly associated with energetic electron scattering into the loss cone via cyclotron resonance with field‐aligned intense whistler‐mode chorus waves. In this study, we show that intense sub‐relativistic microbursts may be generated via electron nonlinear Landau resonance with very oblique whistler‐mode waves. We combine a theoretical model of nonlinear Landau resonance, equatorial observations of intense very oblique whistler‐mode waves, and conjugate low‐altitude observations of <200 keV electron precipitation. Based on model comparison with observed precipitation, we suggest that such sub‐relativistic microbursts occur by plasma sheet (0.1 − 10 keV) electron trapping in nonlinear Landau resonance, resulting in acceleration to ≲200 keV energies and simultaneous transport into the loss cone. The proposed scenario of intense sub‐relativistic (≲200 keV) microbursts demonstrates the importance of very oblique whistler‐mode waves for radiation belt dynamics.more » « less
An official website of the United States government

