skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-speed multiview imaging approaching 4pi steradians using conic section mirrors: theoretical and practical considerations
Illuminating or imaging samples from a broad angular range is essential in a wide variety of computational 3D imaging and resolution-enhancement techniques, such as optical projection tomography, optical diffraction tomography, synthetic aperture microscopy, Fourier ptychographic microscopy, structured illumination microscopy, photogrammetry, and optical coherence refraction tomography. The wider the angular coverage, the better the resolution enhancement or 3D-resolving capabilities. However, achieving such angular ranges is a practical challenge, especially when approaching ± 90 ∘ or beyond. Often, researchers resort to expensive, proprietary high numerical aperture (NA) objectives or to rotating the sample or source-detector pair, which sacrifices temporal resolution or perturbs the sample. Here, we propose several new strategies for multiangle imaging approaching 4pi steradians using concave parabolic or ellipsoidal mirrors and fast, low rotational inertia scanners, such as galvanometers. We derive theoretically and empirically relations between a variety of system parameters (e.g.,  NA, wavelength, focal length, telecentricity) and achievable fields of view (FOVs) and importantly show that intrinsic tilt aberrations do not restrict FOV for many multiview imaging applications, contrary to conventional wisdom. Finally, we present strategies for avoiding spherical aberrations at obliquely illuminated flat boundaries. Our simple designs allow for high-speed multiangle imaging for microscopic, mesoscopic, and macroscopic applications.  more » « less
Award ID(s):
1902904
PAR ID:
10389160
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of the Optical Society of America A
Volume:
38
Issue:
12
ISSN:
1084-7529
Page Range / eLocation ID:
1810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Optical coherence tomography (OCT) has seen widespread success as an in vivo clinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology, and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction tomography (OCRT), a computational extension of OCT that synthesizes an incoherent contrast mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction. Our label-free computational 3D microscope features a novel optical design incorporating a parabolic mirror to enable the capture of 5D plenoptic datasets, consisting of millimetric 3D fields of view over up to ± 75 ∘ without moving the sample. We demonstrate that 3D OCRT reveals 3D features unobserved by conventional OCT in fruit fly, zebrafish, and mouse samples. 
    more » « less
  2. null (Ed.)
    Abstract Structured Illumination Microscopy enables live imaging with sub-diffraction resolution. Unfortunately, optical aberrations can lead to loss of resolution and artifacts in Structured Illumination Microscopy rendering the technique unusable in samples thicker than a single cell. Here we report on the combination of Adaptive Optics and Structured Illumination Microscopy enabling imaging with 150 nm lateral and 570 nm axial resolution at a depth of 80 µm through Caenorhabditis elegans . We demonstrate that Adaptive Optics improves the three-dimensional resolution, especially along the axial direction, and reduces artifacts, successfully realizing 3D-Structured Illumination Microscopy in a variety of biological samples. 
    more » « less
  3. We present a general theory of optical coherence tomography (OCT), which synthesizes the fundamental concepts and implementations of OCT under a common 3D k -space framework. At the heart of this analysis is the Fourier diffraction theorem, which relates the coherent interaction between a sample and plane wave to the Ewald sphere in the 3D k -space representation of the sample. While only the axial dimension of OCT is typically analyzed in k -space, we show that embracing a fully 3D k -space formalism allows explanation of nearly every fundamental physical phenomenon or property of OCT, including contrast mechanism, resolution, dispersion, aberration, limited depth of focus, and speckle. The theory also unifies diffraction tomography, confocal microscopy, point-scanning OCT, line-field OCT, full-field OCT, Bessel beam OCT, transillumination OCT, interferometric synthetic aperture microscopy (ISAM), and optical coherence refraction tomography (OCRT), among others. Our unified theory not only enables clear understanding of existing techniques but also suggests new research directions to continue advancing the field of OCT. 
    more » « less
  4. Second harmonic generation (SHG) microscopy is a valuable tool for optical microscopy. SHG microscopy is normally performed as a point scanning imaging method, which lacks phase information and is limited in spatial resolution by the spatial frequency support of the illumination optics. In addition, aberrations in the illumination are difficult to remove. We propose and demonstrate SHG holographic synthetic aperture holographic imaging in both the forward (transmission) and backward (epi) imaging geometries. By taking a set of holograms with varying incident angle plane wave illumination, the spatial frequency support is increased and the input and output pupil phase aberrations are estimated and corrected – producing diffraction limited SHG imaging that combines the spatial frequency support of the input and output optics. The phase correction algorithm is computationally efficient and robust and can be applied to any set of measured field imaging data. 
    more » « less
  5. Abstract Acquiring detailed 3D images of samples is needed for conducting thorough investigations in a wide range of applications. Doing so using nondestructive methods such as X-ray computed tomography (X-ray CT) has resolution limitations. Destructive methods, which work based on consecutive delayering and imaging of the sample, face a tradeoff between throughput and resolution. Using focused ion beam (FIB) for delayering, although high precision, is low throughput. On the other hand, mechanical methods that can offer fast delayering, are low precision and may put the sample integrity at risk. Herein, we propose to use femtosecond laser ablation as a delayering method in combination with optical and confocal microscopy as the imaging technique for performing rapid 3D imaging. The use of confocal microscopy provides several advantages. First, it eliminates the 3D image distortion resulting from non-flat layers, caused by the difference in laser ablation rate of different materials. It further allows layer height variations to be maintained within a small range. Finally, it enables material characterization based on the processing of material ablation rate at different locations. The proposed method is applied on a printed circuit board (PCB), and the results are validated and compared with the X-ray CT image of the PCB part. 
    more » « less