skip to main content


Title: Real-time wide-field spectral-scanning FMCW coherent 3D imaging and velocimetry
We present a real-time spectral-scanning frequency-modulated continuous wave (FMCW) 3D imaging and velocimetry system that can produce 3D depth maps at 33 Hz, with 48° × 68° field of view (FOV) and 32.8-cm depth range. Each depth map consists of 507 × 500 pixels, with 0.095° × 0.14° angular resolution and 2.82-mm depth resolution. The system employs a grating for beam steering and a telescope for angular FOV magnification. Quantitative depth, reflectivity, and axial velocity measurements of a static 3D printed depth variation target and a moving robotic arm are demonstrated.  more » « less
Award ID(s):
1902904
NSF-PAR ID:
10389162
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
16
ISSN:
0146-9592
Page Range / eLocation ID:
4064
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Illuminating or imaging samples from a broad angular range is essential in a wide variety of computational 3D imaging and resolution-enhancement techniques, such as optical projection tomography, optical diffraction tomography, synthetic aperture microscopy, Fourier ptychographic microscopy, structured illumination microscopy, photogrammetry, and optical coherence refraction tomography. The wider the angular coverage, the better the resolution enhancement or 3D-resolving capabilities. However, achieving such angular ranges is a practical challenge, especially when approaching±<#comment/>90∘<#comment/>or beyond. Often, researchers resort to expensive, proprietary high numerical aperture (NA) objectives or to rotating the sample or source-detector pair, which sacrifices temporal resolution or perturbs the sample. Here, we propose several new strategies for multiangle imaging approaching 4pi steradians using concave parabolic or ellipsoidal mirrors and fast, low rotational inertia scanners, such as galvanometers. We derive theoretically and empirically relations between a variety of system parameters (e.g.,  NA, wavelength, focal length, telecentricity) and achievable fields of view (FOVs) and importantly show that intrinsic tilt aberrations donotrestrict FOV for many multiview imaging applications, contrary to conventional wisdom. Finally, we present strategies for avoiding spherical aberrations at obliquely illuminated flat boundaries. Our simple designs allow for high-speed multiangle imaging for microscopic, mesoscopic, and macroscopic applications.

     
    more » « less
  2. This paper experimentally examines different configurations of a multi-camera array microscope (MCAM) imaging technology. The MCAM is based upon a densely packed array of “micro-cameras” to jointly image across a large field-of-view (FOV) at high resolution. Each micro-camera within the array images a unique area of a sample of interest, and then all acquired data with 54 micro-cameras are digitally combined into composite frames, whose total pixel counts significantly exceed the pixel counts of standard microscope systems. We present results from three unique MCAM configurations for different use cases. First, we demonstrate a configuration that simultaneously images and estimates the 3D object depth across a 100×135mm2FOV at approximately 20 µm resolution, which results in 0.15 gigapixels (GP) per snapshot. Second, we demonstrate an MCAM configuration that records video across a continuous 83×123mm2FOV with twofold increased resolution (0.48 GP per frame). Finally, we report a third high-resolution configuration (2 µm resolution) that can rapidly produce 9.8 GP composites of large histopathology specimens.

     
    more » « less
  3. Optical microscopy has vastly expanded the frontiers of structural and functional biology, due to the non-invasive probing of dynamic volumes in vivo. However, traditional widefield microscopy illuminating the entire field of view (FOV) is adversely affected by out-of-focus light scatter. Consequently, standard upright or inverted microscopes are inept in sampling diffraction-limited volumes smaller than the optical system’s point spread function (PSF). Over the last few decades, several planar and structured (sinusoidal) illumination modalities have offered unprecedented access to sub-cellular organelles and 4D (3D + time) image acquisition. Furthermore, these optical sectioning systems remain unaffected by the size of biological samples, providing high signal-to-noise (SNR) ratios for objective lenses (OLs) with long working distances (WDs). This review aims to guide biologists regarding planar illumination strategies, capable of harnessing sub-micron spatial resolution with a millimeter depth of penetration. 
    more » « less
  4. This Letter reports a new, to the best of our knowledge, high-frequency surface-micromachined optical ultrasound transducer (HF-SMOUT) array for micro photoacoustic computed tomography (µPACT). An 11 × 11 mm22D array of 220 × 220 elements (35 µm in diameter) is designed, fabricated, and characterized. The optical resonance wavelength (ORW) of ≥90% of the elements falls within a 6-nm range. The acoustic center frequency and bandwidth of the elements are ∼14 MHz and ∼18 MHz (129%), respectively. The noise equivalent pressure (NEP) is 161 Pa (or 18 mPa/Hz) within a measurement bandwidth of 5–75 MHz. The standard deviation of the ORW drift is 0.45 nm and 0.93 nm within 25°C−55°C, respectively, and during a seven-day continuous water immersion. PACT experiments are conducted to evaluate the imaging performances of the HF-SMOUT array. The spatial resolution is estimated as 90 µm (axial) and 250–750 µm (lateral) within a 10 × 10 mm2field of view (FoV) and the imaging depth of 16 mm. A 3D PA image of a knotted black hair target is also successfully acquired. These results demonstrate the feasibility of using the HF-SMOUT array for µPACT applications.

     
    more » « less
  5. Holography is a promising avenue for high-quality displays without requiring bulky, complex optical systems. While recent work has demonstrated accurate hologram generation of 2D scenes, high-quality holographic projections of 3D scenes has been out of reach until now. Existing multiplane 3D holography approaches fail to model wavefronts in the presence of partial occlusion while holographic stereogram methods have to make a fundamental tradeoff between spatial and angular resolution. In addition, existing 3D holographic display methods rely on heuristic encoding of complex amplitude into phase-only pixels which results in holograms with severe artifacts. Fundamental limitations of the input representation, wavefront modeling, and optimization methods prohibit artifact-free 3D holographic projections in today’s displays. To lift these limitations, we introduce hogel-free holography which optimizes for true 3D holograms, supporting both depth- and view-dependent effects for the first time. Our approach overcomes the fundamental spatio-angular resolution tradeoff typical to stereogram approaches. Moreover, it avoids heuristic encoding schemes to achieve high image fidelity over a 3D volume. We validate that the proposed method achieves 10 dB PSNR improvement on simulated holographic reconstructions. We also validate our approach on an experimental prototype with accurate parallax and depth focus effects. 
    more » « less