skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Real-time wide-field spectral-scanning FMCW coherent 3D imaging and velocimetry
We present a real-time spectral-scanning frequency-modulated continuous wave (FMCW) 3D imaging and velocimetry system that can produce 3D depth maps at 33 Hz, with 48° × 68° field of view (FOV) and 32.8-cm depth range. Each depth map consists of 507 × 500 pixels, with 0.095° × 0.14° angular resolution and 2.82-mm depth resolution. The system employs a grating for beam steering and a telescope for angular FOV magnification. Quantitative depth, reflectivity, and axial velocity measurements of a static 3D printed depth variation target and a moving robotic arm are demonstrated.  more » « less
Award ID(s):
1902904
PAR ID:
10389162
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Optics Letters
Volume:
47
Issue:
16
ISSN:
0146-9592
Page Range / eLocation ID:
4064
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Illuminating or imaging samples from a broad angular range is essential in a wide variety of computational 3D imaging and resolution-enhancement techniques, such as optical projection tomography, optical diffraction tomography, synthetic aperture microscopy, Fourier ptychographic microscopy, structured illumination microscopy, photogrammetry, and optical coherence refraction tomography. The wider the angular coverage, the better the resolution enhancement or 3D-resolving capabilities. However, achieving such angular ranges is a practical challenge, especially when approaching ±<#comment/> 90 ∘<#comment/> or beyond. Often, researchers resort to expensive, proprietary high numerical aperture (NA) objectives or to rotating the sample or source-detector pair, which sacrifices temporal resolution or perturbs the sample. Here, we propose several new strategies for multiangle imaging approaching 4pi steradians using concave parabolic or ellipsoidal mirrors and fast, low rotational inertia scanners, such as galvanometers. We derive theoretically and empirically relations between a variety of system parameters (e.g.,  NA, wavelength, focal length, telecentricity) and achievable fields of view (FOVs) and importantly show that intrinsic tilt aberrations donotrestrict FOV for many multiview imaging applications, contrary to conventional wisdom. Finally, we present strategies for avoiding spherical aberrations at obliquely illuminated flat boundaries. Our simple designs allow for high-speed multiangle imaging for microscopic, mesoscopic, and macroscopic applications. 
    more » « less
  2. Holography is a promising avenue for high-quality displays without requiring bulky, complex optical systems. While recent work has demonstrated accurate hologram generation of 2D scenes, high-quality holographic projections of 3D scenes has been out of reach until now. Existing multiplane 3D holography approaches fail to model wavefronts in the presence of partial occlusion while holographic stereogram methods have to make a fundamental tradeoff between spatial and angular resolution. In addition, existing 3D holographic display methods rely on heuristic encoding of complex amplitude into phase-only pixels which results in holograms with severe artifacts. Fundamental limitations of the input representation, wavefront modeling, and optimization methods prohibit artifact-free 3D holographic projections in today’s displays. To lift these limitations, we introduce hogel-free holography which optimizes for true 3D holograms, supporting both depth- and view-dependent effects for the first time. Our approach overcomes the fundamental spatio-angular resolution tradeoff typical to stereogram approaches. Moreover, it avoids heuristic encoding schemes to achieve high image fidelity over a 3D volume. We validate that the proposed method achieves 10 dB PSNR improvement on simulated holographic reconstructions. We also validate our approach on an experimental prototype with accurate parallax and depth focus effects. 
    more » « less
  3. Near-eye display systems for augmented reality (AR) aim to seamlessly merge virtual content with the user’s view of the real-world. A substantial limitation of current systems is that they only present virtual content over a limited portion of the user’s natural field of view (FOV). This limitation reduces the immersion and utility of these systems. Thus, it is essential to quantify FOV coverage in AR systems and understand how to maximize it. It is straightforward to determine the FOV coverage for monocular AR systems based on the system architecture. However, stereoscopic AR systems that present 3D virtual content create a more complicated scenario because the two eyes’ views do not always completely overlap. The introduction of partial binocular overlap in stereoscopic systems can potentially expand the perceived horizontal FOV coverage, but it can also introduce perceptual nonuniformity artifacts. In this arrticle, we first review the principles of binocular FOV overlap for natural vision and for stereoscopic display systems. We report the results of a set of perceptual studies that examine how different amounts and types of horizontal binocular overlap in stereoscopic AR systems influence the perception of nonuniformity across the FOV. We then describe how to quantify the horizontal FOV in stereoscopic AR when taking 3D content into account. We show that all stereoscopic AR systems result in a variable horizontal FOV coverage and variable amounts of binocular overlap depending on fixation distance. Taken together, these results provide a framework for optimizing perceived FOV coverage and minimizing perceptual artifacts in stereoscopic AR systems for different use cases. 
    more » « less
  4. We introduce a system that exploits the screen and front-facing camera of a mobile device to perform three-dimensional deflectometry-based surface measurements. In contrast to current mobile deflectometry systems, our method can capture surfaces with large normal variation and wide field of view (FoV). We achieve this by applying automated multi-view panoramic stitching algorithms to produce a large FoV normal map from a hand-guided capture process without the need for external tracking systems, like robot arms or fiducials. The presented work enables 3D surface measurements of specular objects ’in the wild’ with a system accessible to users with little to no technical imaging experience. We demonstrate high-quality 3D surface measurements without the need for a calibration procedure. We provide experimental results with our prototype Deflectometry system and discuss applications for computer vision tasks such as object detection and recognition. 
    more » « less
  5. Optical microscopy has vastly expanded the frontiers of structural and functional biology, due to the non-invasive probing of dynamic volumes in vivo. However, traditional widefield microscopy illuminating the entire field of view (FOV) is adversely affected by out-of-focus light scatter. Consequently, standard upright or inverted microscopes are inept in sampling diffraction-limited volumes smaller than the optical system’s point spread function (PSF). Over the last few decades, several planar and structured (sinusoidal) illumination modalities have offered unprecedented access to sub-cellular organelles and 4D (3D + time) image acquisition. Furthermore, these optical sectioning systems remain unaffected by the size of biological samples, providing high signal-to-noise (SNR) ratios for objective lenses (OLs) with long working distances (WDs). This review aims to guide biologists regarding planar illumination strategies, capable of harnessing sub-micron spatial resolution with a millimeter depth of penetration. 
    more » « less