skip to main content


Title: Crystallization of high gyrotropy garnets with decreasing thermal processing budgets as analyzed by electron backscatter diffraction

Rare-earth iron garnets with large magnetic gyrotropy, made with reduced thermal budgets, are ideal magneto-optical materials for integrated isolators. However, reduced thermal budgets impact Faraday rotation by limiting crystallization, and characterization of crystallinity is limited by resolution or scannable area. Here, electron backscatter diffraction (EBSD) is used to measure crystallinity in cerium substituted yttrium- and terbium-iron garnets (CeYIG and CeTbIG) grown on planar Si, crystallized using one-step rapid thermal processes, leading to large Faraday rotations > −3500 °/cm at 1550 nm. Varying degrees of crystallinity are observed in planar Si and patterned Si waveguides, and specific dependences of crystallite size are attributed to the nucleation/growth processes of the garnets and the lateral dimensions of the waveguide. On the other hand, a low thermal budget alternative–exfoliated CeTbIG nanosheets–are fully crystalline and maintain high Faraday rotations of −3200 °/cm on par with monolithically integrated thin film garnets.

 
more » « less
Award ID(s):
2043044 2011401
NSF-PAR ID:
10389344
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optical Materials Express
Volume:
13
Issue:
2
ISSN:
2159-3930
Page Range / eLocation ID:
Article No. 357
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Films of polycrystalline terbium iron garnet (TbIG), cerium‐substituted TbIG (CeTbIG), and bismuth‐substituted TbIG (BiTbIG) are grown on Si substrates by pulsed laser deposition. The films grow under tensile strain due to thermal mismatch with the Si substrate, resulting in a dominant magnetoelastic anisotropy which, combined with shape anisotropy, leads to in‐plane magnetization. TbIG has a compensation temperature of 253 K which is reduced by substitution of Ce and Bi. The Faraday rotation at 1550 nm of the TbIG, Ce0.36TbIG, and Bi0.03TbIG films is 5400 ± 600° cm−1, 4500 ± 100° cm–1, and 6200 ± 300° cm−1, respectively, while Ce0.36TbIG and Bi0.03TbIG exhibit lower optical absorption than TbIG, attributed to a reduction in Fe2+and Tb4+absorption pathways. The high Faraday rotation of the films, and in particular the high magneto‐optical figure of merit of the Bi0.03TbIG of 720° dB−1at 1550 nm, make these polycrystalline films valuable for applications in integrated photonics.

     
    more » « less
  2. Abstract

    One of the best magneto‐optical claddings for optical isolators in photonic integrated circuits is sputter deposited cerium‐doped terbium iron garnet (Ce:TbIG) which has a large Faraday rotation (≈−3500° cm−1at 1550 nm). Near‐ideal stoichiometry of Ce0.5Tb2.5Fe4.75O12is found to have a 44 nm magnetic dead layer that can impede the interaction of propagating modes with garnet claddings. The effective anisotropy of Ce:TbIG on Si is also important, but calculations using bulk thermal mismatch overestimate the effective anisotropy. Here, X‐ray diffraction measurements yield highly accurate measurements of strain that show anisotropy favors an in‐plane magnetization in agreement with the positive magnetostriction of Ce:TbIG. Upon doping TbIG with Ce, a slight decrease in compensation temperature occurs which points to preferential rare‐earth occupation in dodecahedral sites and an absence of cation redistribution between different lattice sites. The high Faraday rotation, large remanent ratio, large coercivity, and preferential in‐plane magnetization enable Ce:TbIG to be an in‐plane latched garnet, immune to stray fields with magnetization collinear to direction of light propagation.

     
    more » « less
  3. Abstract

    Magnetic insulators, such as the rare‐earth iron garnets, are promising materials for energy‐efficient spintronic memory and logic devices, and their anisotropy, magnetization, and other properties can be tuned over a wide range through selection of the rare‐earth ion. Films are typically grown as epitaxial single crystals on garnet substrates, but integration of these materials with conventional electronic devices requires growth on Si. The growth, magnetic, and spin transport properties of polycrystalline films of dysprosium iron garnet (DyIG) with perpendicular magnetic anisotropy (PMA) on Si substrates and as single crystal films on garnet substrates are reported. PMA originates from magnetoelastic anisotropy and is obtained by controlling the strain state of the film through lattice mismatch or thermal expansion mismatch with the substrates. DyIG/Si exhibits large grain sizes and bulk‐like magnetization and compensation temperature. Polarized neutron reflectometry demonstrates a small interfacial nonmagnetic region near the substrate. Spin Hall magnetoresistance measurements conducted on a Pt/DyIG/Si heterostructure demonstrate a large interfacial spin mixing conductance between the Pt and DyIG comparable to other garnet/Pt heterostructures.

     
    more » « less
  4. Abstract The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials 1–3 . Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis 4,5 . However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS 2 , one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS 2 (57 ± 3 mW m −1  K −1 ) and WS 2 (41 ± 3 mW m −1  K −1 ) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS 2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems. 
    more » « less
  5. Cerium-substituted yttrium iron garnet (Ce:YIG, Ce0.9Y2.1Fe5O12) was epitaxially grown on a (111)-oriented yttrium aluminum garnet (YAG) substrate using radio frequency ion beam sputtering. Magnetic hysteresis loops, transmissivity spectra, and magnetooptical (MO) responses, including Faraday rotation and Faraday ellipticity, were measured. The structural properties of the grown Ce:YIG were characterized using the x-ray rocking curve, reciprocal space map, pole figure, and x-ray reflectivity. X-ray photoelectron spectrometry revealed a dominant Ce3+ state in the grown Ce:YIG, but the transmission electron microscopy images showed columnar growth of Ce:YIG. This study demonstrates integration of epitaxial Ce:YIG on YAG, marking a significant step toward the fusion of MO garnets and laser crystals.

     
    more » « less