skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Challenges in Measurement of Broadband THz Photoconductive Antennas
This work utilizes an open bench time-domain spectroscopy system to measure the THz pulse and spectrum of photoconductive antennas (PCAs) with two different active layer materials: low temperature gallium arsenide (LT-GaAs) and 2D black phosphorous (BP). COMSOL Multiphysics modeling of the PCAs has shown that using BP as an active layer greatly increases the optical to THz conversion efficiency compared to LT-GaAs. However, the fabrication and measurement of both devices has demonstrated the opposite.  more » « less
Award ID(s):
1948255
PAR ID:
10389376
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
ARFTG
Date Published:
Journal Name:
ARFTG Microwave Measurement Conference
ISSN:
2767-8776
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. IEEE (Ed.)
    In this project, Hall bar devices with black phosphorus (BP) as the semiconductor layer were fabricated to measure the Hall mobility and carrier density of exfoliated BP flakes obtained from bulk crystals acquired from various commercial sources. Black phosphorus is proposed as an alternative material for terahertz photoconductive antennas (PCAs) from the standard GaAs or InGaAs PCAs that are currently available commercially. Black phosphorus is an anisotropic material with a reported Hall mobility over three times greater than GaAs, but our preliminary testing of BP PCAs has shown dramatic differences of electrical properties between black phosphorus sourced from three different vendors. To determine the best quality black phosphorus source, Hall bar devices containing 40 nm BP flakes were used to measure the carrier mobility of the semiconductor. A Hall bar device is created by layering a 40nm BP flake underneath a hexagonal boron-nitride (hBN) flake, all on top of gold contacts in a Hall bar arrangement fabricated on a high-resistivity silicon substrate. The hBN acts as a passivation layer for the BP so that it may be safely removed from the glove box without damage. The Hall mobility of the material from different sources ranges from around 100 cm2/Vs to 1600 cm2/Vs, with only one source showing promising, high mobility results. This study allows BP with optimized electrical properties to be incorporated into THz PCAs for characterization via THz time domain spectroscopy. 
    more » « less
  2. This paper presents a 3D model of a terahertz photoconductive antenna (PCA) using black phosphorus, an emerging 2D anisotropic material, as the semiconductor layer. This work aims at understanding the potential of black phosphorus (BP) to advance the signal generation and bandwidth of conventional terahertz (THz) PCAs. The COMSOL Multiphysics package, based on the finite element method, is utilized to model the 3D BP PCA emitter using four modules: the frequency domain RF module to solve Maxwell’s equations, the semiconductor module to calculate the photocurrent, the heat transfer in solids module to calculate the temperature variations, and the transient RF module to calculate the THz radiated electric field pulse. The proposed 3D model is computationally intensive where the PCA device includes thin layers of thicknesses ranging from nano- to microscale. The symmetry of the configuration was exploited by applying the perfect electric and magnetic boundary conditions to reduce the computational domain to only one quarter of the device in the RF module. The results showed that the temperature variation due to the conduction of current induced by the bias voltage increased by only 0.162 K. In addition, the electromagnetic power dissipation in the semiconductor due to the femtosecond laser source showed an increase in temperature by 0.441 K. The results show that the temperature variations caused the peak of the photocurrent to increase by ∼<#comment/> 3.4 %<#comment/> and ∼<#comment/> 10 %<#comment/> , respectively, under a maximum bias voltage of 1 V and average laser power of 1 mW. While simulating the active area of the antenna provided accurate results for the optical and semiconductor responses, simulating the thermal effect on the photocurrent requires a larger computational domain to avoid false rise in temperature. Finally, the simulated THz signal generation electric field pulse exhibits a trend in increasing the bandwidth of the proposed BP PCA compared with the measured pulse of a reference commercial LT-GaAs PCA. Enhancing signal generation and bandwidth will improve THz imaging and spectroscopy for biomedical and material characterization applications. 
    more » « less
  3. IEEE (Ed.)
    This paper presents fabrication and experimental measurements of broadband terahertz (THz) photoconductive antennas (PCAs), based on the conventional low temperature gallium arsenide (LT-GaAs) material. Various antenna electrode geometries, that were previously designed through computer simulations, are fabricated using the electron beam lithography (EBL). The generated time domain pulse is measured using a time domain spectroscopy system (TDS). The bandwidth of each emitting device is obtained using the fast Fourier transform of the generated electric field pulse. 
    more » « less
  4. null (Ed.)
    This paper presents the signal generation measurements of LT-GaAs photoconductive antenna (PCA) emitters. These measurements were developed in an open-bench time-domain spectroscopy (TDS) system. The main challenges presented here are associated with the alignment of the PCA devices and the location of the terahertz (THz) pulse with respect to the optical delay in the system. The position of the slow delay line was crucial for the location of the THz pulse, which helped in the correct alignment process of the emitter and detector devices. 
    more » « less
  5. This paper presents the signal generation measurements of LT-GaAs photoconductive antenna (PCA) emitters. These measurements were developed in an open-bench time-domain spectroscopy (TDS) system. The main challenges presented here are associated with the alignment of the PCA devices and the location of the terahertz (THz) pulse with respect to the optical delay in the system. The position of the slow delay line was crucial for the location of the THz pulse, which helped in the correct alignment process of the emitter and detector devices. 
    more » « less