Abstract When hybridization or other forms of lateral gene transfer have occurred, evolutionary relationships of species are better represented by phylogenetic networks than by trees. While inference of such networks remains challenging, several recently proposed methods are based on quartet concordance factors—the probabilities that a tree relating a gene sampled from the species displays the possible 4-taxon relationships. Building on earlier results, we investigate what level-1 network features are identifiable from concordance factors under the network multispecies coalescent model. We obtain results on both topological features of the network, and numerical parameters, uncovering a number of failures of identifiability related to 3-cycles in the network. Addressing these identifiability issues is essential for designing statistically consistent inference methods.
more »
« less
Distinguishing level-1 phylogenetic networks on the basis of data generated by Markov processes
Abstract Phylogenetic networks can represent evolutionary events that cannot be described by phylogenetic trees. These networks are able to incorporate reticulate evolutionary events such as hybridization, introgression, and lateral gene transfer. Recently, network-based Markov models of DNA sequence evolution have been introduced along with model-based methods for reconstructing phylogenetic networks. For these methods to be consistent, the network parameter needs to be identifiable from data generated under the model. Here, we show that the semi-directed network parameter of a triangle-free, level-1 network model with any fixed number of reticulation vertices is generically identifiable under the Jukes–Cantor, Kimura 2-parameter, or Kimura 3-parameter constraints.
more »
« less
- Award ID(s):
- 1945584
- PAR ID:
- 10389420
- Date Published:
- Journal Name:
- Journal of Mathematical Biology
- Volume:
- 83
- Issue:
- 3
- ISSN:
- 0303-6812
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Russell, Schwartz (Ed.)Abstract Motivation With growing genome-wide molecular datasets from next-generation sequencing, phylogenetic networks can be estimated using a variety of approaches. These phylogenetic networks include events like hybridization, gene flow or horizontal gene transfer explicitly. However, the most accurate network inference methods are computationally heavy. Methods that scale to larger datasets do not calculate a full likelihood, such that traditional likelihood-based tools for model selection are not applicable to decide how many past hybridization events best fit the data. We propose here a goodness-of-fit test to quantify the fit between data observed from genome-wide multi-locus data, and patterns expected under the multi-species coalescent model on a candidate phylogenetic network. Results We identified weaknesses in the previously proposed TICR test, and proposed corrections. The performance of our new test was validated by simulations on real-world phylogenetic networks. Our test provides one of the first rigorous tools for model selection, to select the adequate network complexity for the data at hand. The test can also work for identifying poorly inferred areas on a network. Availability and implementation Software for the goodness-of-fit test is available as a Julia package at https://github.com/cecileane/QuartetNetworkGoodnessFit.jl. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
The development of statistical methods to infer species phylogenies with reticulations (species networks) has led to many discoveries of gene flow between distinct species. These methods typically assume only incomplete lineage sorting and introgression. Given that phylogenetic networks can be arbitrarily complex, these methods might compensate for model misspecification by increasing the number of dimensions beyond the true value. Herein, we explore the effect of potential model misspecification, including the negligence of gene tree estimation error (GTEE) and assumption of a single substitution rate for all genomic loci, on the accuracy of phylogenetic network inference using both simulated and biological data. In particular, we assess the accuracy of estimated phylogenetic networks as well as test statistics for determining whether a network is the correct evolutionary history, as opposed to the simpler model that is a tree.We found that while GTEE negatively impacts the performance of test statistics to determine the “treeness” of the evolutionary history of a data set, running those tests on triplets of taxa and correcting for multiple-testing significantly ameliorates the problem. We also found that accounting for substitution rate heterogeneity improves the reliability of full Bayesian inference methods of phylogenetic networks, whereas summary statistic methods are robust to GTEE and rate heterogeneity, though currently require manual inspection to determine the network complexity.more » « less
-
Within-species trait variation may be the result of genetic variation, environmental variation, or measurement error, for example. In phylogenetic comparative studies, failing to account for within-species variation has many adverse effects, such as increased error in testing hypotheses about evolutionary correlations, biased estimates of evolutionary rates, and inaccurate inference of the mode of evolution. These adverse effects were demonstrated in studies that considered a tree-like underlying phylogeny. Comparative methods on phylogenetic networks are still in their infancy. The impact of within-species variation on network-based methods has not been studied. Here, we introduce a phylogenetic linear model in which the phylogeny can be a network to account for within-species variation in the continuous response trait assuming equal within-species variances across species. We show how inference based on the individual values can be reduced to a problem using species-level summaries, even when the within-species variance is estimated. Our method performs well under various simulation settings and is robust when within-species variances are unequal across species. When phenotypic (within-species) correlations differ from evolutionary (between-species) correlations, estimates of evolutionary coefficients are pulled towards the phenotypic coefficients for all methods we tested. Also, evolutionary rates are either underestimated or overestimated, depending on the mismatch between phenotypic and evolutionary relationships. We applied our method to morphological and geographical data from Polemonium. We find a strong negative correlation of leaflet size with elevation, despite a positive correlation within species. Our method can explore the role of gene flow in trait evolution by comparing the fit of a network to that of a tree. We find marginal evidence for leaflet size being affected by gene flow and support for previous observations on the challenges of using individual continuous traits to infer inheritance weights at reticulations. Our method is freely available in the Julia package PhyloNetworks.more » « less
-
Holder, Mark (Ed.)Abstract Phylogenetic networks provide a powerful framework for modeling and analyzing reticulate evolutionary histories. While polyploidy has been shown to be prevalent not only in plants but also in other groups of eukaryotic species, most work done thus far on phylogenetic network inference assumes diploid hybridization. These inference methods have been applied, with varying degrees of success, to data sets with polyploid species, even though polyploidy violates the mathematical assumptions underlying these methods. Statistical methods were developed recently for handling specific types of polyploids and so were parsimony methods that could handle polyploidy more generally yet while excluding processes such as incomplete lineage sorting. In this article, we introduce a new method for inferring most parsimonious phylogenetic networks on data that include polyploid species. Taking gene tree topologies as input, the method seeks a phylogenetic network that minimizes deep coalescences while accounting for polyploidy. We demonstrate the performance of the method on both simulated and biological data. The inference method as well as a method for evaluating evolutionary hypotheses in the form of phylogenetic networks are implemented and publicly available in the PhyloNet software package. [Incomplete lineage sorting; minimizing deep coalescences; multilabeled trees; multispecies network coalescent; phylogenetic networks; polyploidy.]more » « less
An official website of the United States government

