Understanding phenotypic disparity across the tree of life requires identifying where and when evolutionary rates change on phylogeny. A primary methodological challenge in macroevolution is therefore to develop methods for accurate inference of among-lineage variation in rates of phenotypic evolution. Here, we describe a method for inferring among-lineage evolutionary rate heterogeneity in both continuous and discrete traits. The method assumes that the present-day distribution of a trait is shaped by a variable-rate process arising from a mixture of constant-rate processes and uses a single-pass tree traversal algorithm to estimate branch-specific evolutionary rates. By employing dynamic programming optimization techniques and approximate maximum likelihood estimators where appropriate, our method permits rapid exploration of the tempo and mode of phenotypic evolution. Simulations indicate that the method reconstructs rates of trait evolution with high accuracy. Application of the method to data sets on squamate reptile reproduction and turtle body size recovers patterns of rate heterogeneity identified by previous studies but with computational costs reduced by many orders of magnitude. Our results expand the set of tools available for detecting macroevolutionary rate heterogeneity and point to the utility of fast, approximate methods for studying large-scale biodiversity dynamics. [Brownian motion; continuous characters; discrete characters; macroevolution; Markov process; rate heterogeneity.]
- PAR ID:
- 10511666
- Publisher / Repository:
- The Ohio State University Libraries
- Date Published:
- Journal Name:
- Bulletin of the Society of Systematic Biologists
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2768-0819
- Page Range / eLocation ID:
- 1 to 29
- Subject(s) / Keyword(s):
- gene flow hybridization Polemonium measurement error phylogenetic regression PGLS REML
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Phylogenetic comparative methods have long been a mainstay of evolutionary biology, allowing for the study of trait evolution across species while accounting for their common ancestry. These analyses typically assume a single, bifurcating phylogenetic tree describing the shared history among species. However, modern phylogenomic analyses have shown that genomes are often composed of mosaic histories that can disagree both with the species tree and with each other—so-called discordant gene trees. These gene trees describe shared histories that are not captured by the species tree, and therefore that are unaccounted for in classic comparative approaches. The application of standard comparative methods to species histories containing discordance leads to incorrect inferences about the timing, direction, and rate of evolution. Here, we develop two approaches for incorporating gene tree histories into comparative methods: one that constructs an updated phylogenetic variance–covariance matrix from gene trees, and another that applies Felsenstein's pruning algorithm over a set of gene trees to calculate trait histories and likelihoods. Using simulation, we demonstrate that our approaches generate much more accurate estimates of tree-wide rates of trait evolution than standard methods. We apply our methods to two clades of the wild tomato genusmore » « less
Solanum with varying rates of discordance, demonstrating the contribution of gene tree discordance to variation in a set of floral traits. Our approaches have the potential to be applied to a broad range of classic inference problems in phylogenetics, including ancestral state reconstruction and the inference of lineage-specific rate shifts. -
A simple hierarchical model for heterogeneity in the evolutionary correlation on a phylogenetic treeNumerous questions in phylogenetic comparative biology revolve around the correlated evolution of two or more phenotypic traits on a phylogeny. In many cases, it may be sufficient to assume a constant value for the evolutionary correlation between characters across all the clades and branches of the tree. Under other circumstances, however, it is desirable or necessary to account for the possibility that the evolutionary correlation differs through time or in different sections of the phylogeny. Here, we present a method designed to fit a hierarchical series of models for heterogeneity in the evolutionary rates and correlation of two quantitative traits on a phylogenetic tree. We apply the method to two datasets: one for different attributes of the buccal morphology in sunfishes (Centrarchidae); and a second for overall body length and relative body depth in rock- and non-rock-dwelling South American iguanian lizards. We also examine the performance of the method for parameter estimation and model selection using a small set of numerical simulations.more » « less
-
Abstract Individuals frequently differ consistently from one another in their average behaviours (i.e. ‘animal personality’) and in correlated suites of consistent behavioural responses (i.e. ‘behavioural syndromes’). However, understanding the evolutionary basis of this (co)variation has lagged behind demonstrations of its presence. This lag partially stems from comparative methods rarely being used in the field. Consequently, much of the research on animal personality has relied on ‘adaptive stories’ focused on single species and populations. Here, we used a comparative approach to examine the role of phylogeny in shaping patterns of average behaviours, behavioural variation and behavioural correlations. In comparing the behaviours and behavioural variation for five species of Gryllid crickets, we found that phylogeny shaped average behaviours and behavioural (co)variation. Despite differences among species, behavioural responses and variation were most similar among more closely related species. These results suggest that phylogenetic constraints play an important role in the expression of animal personalities and behavioural syndromes and emphasize the importance of examining evolutionary explanations within a comparative framework.
-
Abstract Traits underlie organismal responses to their environment and are essential to predict community responses to environmental conditions under global change. Species differ in life‐history traits, morphometrics, diet type, reproductive characteristics and habitat utilization.
Trait associations are widely analysed using phylogenetic comparative methods (PCM) to account for correlations among related species. Similarly, traits are measured for some but not all species, and missing continuous traits (e.g. growth rate) can be imputed using ‘phylogenetic trait imputation’ (PTI), based on evolutionary relatedness and trait covariance. However, PTI has not been available for categorical traits, and estimating covariance among traits without ecological constraints risks inferring implausible evolutionary mechanisms.
Here, we extend previous PCM and PTI methods by (1) specifying covariance among traits as a structural equation model (SEM), and (2) incorporating associations among both continuous and categorical traits. Fitting a SEM replaces the covariance among traits with a set of linear path coefficients specifying potential evolutionary mechanisms. Estimated parameters then represent regression slopes (i.e. the average change in trait Y given an exogenous change in trait X) that can be used to calculate both direct effects (X impacts Y) and indirect effects (X impacts Z and Z impacts Y).
We demonstrate phylogenetic structural‐equation mixed‐trait imputation using 33 variables representing life history, reproductive, morphological, and behavioural traits for all >32,000 described fishes worldwide. SEM coefficients suggest that one degree Celsius increase in habitat is associated with an average 3.5% increase in natural mortality (including a 1.4% indirect impact that acts via temperature effects on the growth coefficient), and an average 3.0% decrease in fecundity (via indirect impacts on maximum age and length). Cross‐validation indicates that the model explains 54%–89% of variance for withheld measurements of continuous traits and has an area under the receiver‐operator‐characteristics curve of 0.86–0.99 for categorical traits.
We use imputed traits to classify all fishes into life‐history types, and confirm a phylogenetic signal in three dominant life‐history strategies in fishes. PTI using phylogenetic SEMs ensures that estimated parameters are interpretable as regression slopes, such that the inferred evolutionary relationships can be compared with long‐term evolutionary and rearing experiments.