Many scientific applications compute using sparse data and store that data in a variety of sparse formats because each format has unique space and performance benefits. Optimizing applications that use sparse data involves translating the sparse data into the chosen format and transforming the computation to iterate over that format. This paper presents a formal definition of sparse tensor formats and an automated approach to synthesize the transformation between formats. This approach is unique in that it supports ordering constraints not supported by other approaches and synthesizes the transformation code in a high-level intermediate representation suitable for applying composable transformations such as loop fusion and temporary storage reduction. We demonstrate that the synthesized code for COO to CSR with optimizations is 2.85x faster than TACO, Intel MKL, and SPARSKIT while the more complex COO to DIA is 1.4x slower than TACO but faster than SPARSKIT and Intel MKL using the geometric average of execution time.
more »
« less
Code Synthesis for Sparse Tensor Format Conversion and Optimization
Many scientific applications compute on sparse data and use a variety of sparse formats because each format has unique space and performance benefits. Optimizing applications that use sparse data involves translating the sparse data into the chosen format and transforming the computation to iterate over that format. This paper presents a formal definition of sparse tensor formats and an automated approach to synthesize the transformation between formats. This approach is unique in that it supports ordering constraints not supported by other approaches and synthesizes the transformation code in a high-level intermediate representation suitable for applying composable transformations such as loop fusion and temporary storay reduction. We demonstrate that the synthesized code for COO to CSR with optimizations is 3.4X faster than TACO, Intel MKL and SPARSKIT while the more complex COO to DIA is slower than TACO but competitive with Intel MKL and SPARSKIT.
more »
« less
- PAR ID:
- 10389650
- Date Published:
- Journal Name:
- International Symposium on Code Generation and Optimization
- ISSN:
- 2643-2838
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Irregular data structures, as exemplified with sparse matrices, have proved to be essential in modern computing. Numerous sparse formats have been investigated to improve the overall performance of Sparse Matrix-Vector multiply (SpMV). But in this work we propose instead to take a fundamentally different approach: to automatically build sets of regular sub-computations by mining for regular sub-regions in the irregular data structure. Our approach leads to code that is specialized to the sparsity structure of the input matrix, but which does not need anymore any indirection array, thereby improving SIMD vectorizability. We particularly focus on small sparse structures (below 10M nonzeros), and demonstrate substantial performance improvements and compaction capabilities compared to a classical CSR implementation and Intel MKL IE's SpMV implementation, evaluating on 200+ different matrices from the SuiteSparse repository.more » « less
-
The ongoing trend of hardware specialization has led to a growing use of custom data formats when processing sparse workloads, which are typically memory-bound. These formats facilitate optimized software/hardware implementations by utilizing sparsity pattern- or target-aware data structures and layouts to enhance memory access latency and bandwidth utilization. However, existing sparse tensor programming models and compilers offer little or no support for productively customizing the sparse formats. Additionally, because these frameworks represent formats using a limited set of per-dimension attributes, they lack the flexibility to accommodate numerous new variations of custom sparse data structures and layouts. To overcome this deficiency, we propose UniSparse, an intermediate language that provides a unified abstraction for representing and customizing sparse formats. Unlike the existing attribute-based frameworks, UniSparse decouples the logical representation of the sparse tensor (i.e., the data structure) from its low-level memory layout, enabling the customization of both. As a result, a rich set of format customizations can be succinctly expressed in a small set of well-defined query, mutation, and layout primitives. We also develop a compiler leveraging the MLIR infrastructure, which supports adaptive customization of formats, and automatic code generation of format conversion and compute operations for heterogeneous architectures. We demonstrate the efficacy of our approach through experiments running commonly-used sparse linear algebra operations with specialized formats on multiple different hardware targets, including an Intel CPU, an NVIDIA GPU, an AMD Xilinx FPGA, and a simulated processing-in-memory (PIM) device.more » « less
-
Dependence between iterations in sparse computations causes inefficient use of memory and computation resources. This paper proposes sparse fusion, a technique that generates efficient parallel code for the combination of two sparse matrix kernels, where at least one of the kernels has loop-carried dependencies. Existing implementations optimize individual sparse kernels separately. However, this approach leads to synchronization overheads and load imbalance due to the irregular dependence patterns of sparse kernels, as well as inefficient cache usage due to their irregular memory access patterns. Sparse fusion uses a novel inspection strategy and code transformation to generate parallel fused code optimized for data locality and load balance. Sparse fusion outperforms the best of unfused implementations using ParSy and MKL by an average of 4.2× and is faster than the best of fused implementations using existing scheduling algorithms, such as LBC, DAGP, and wavefront by an average of 4× for various kernel combinations.more » « less
-
Tensor computations present significant performance challenges that impact a wide spectrum of applications. Efforts on improving the performance of tensor computations include exploring data layout, execution scheduling, and parallelism in common tensor kernels. This work presents a benchmark suite for arbitrary-order sparse tensor kernels using state-of-the-art tensor formats: coordinate (COO) and hierarchical coordinate (HiCOO). It demonstrates a set of reference tensor kernel implementations and some observations on Intel CPUs and NVIDIA GPUs.more » « less