Diffusion models (DMs) have enabled breakthroughs in image synthesis tasks but lack an intuitive interface for consistent image-to-image (I2I) translation. Various methods have been explored to address this issue, including mask-based methods, attention-based methods, and image-conditioning. However, it remains a critical challenge to enable unpaired I2I translation with pre-trained DMs while maintaining satisfying consistency. This paper introduces Cyclenet, a novel but simple method that incorporates cycle consistency into DMs to regularize image manipulation. We validate Cyclenet on unpaired I2I tasks of different granularities. Besides the scene and object level translation, we additionally contribute a multi-domain I2I translation dataset to study the physical state changes of objects. Our empirical studies show that Cyclenet is superior in translation consistency and quality, and can generate high-quality images for out-of-domain distributions with a simple change of the textual prompt. Cyclenet is a practical framework, which is robust even with very limited training data (around 2k) and requires minimal computational resources (1 GPU) to train.
more »
« less
Geometry-Aware Eye Image-To-Image Translation
Recently, image-to-image translation (I2I) has met with great success in computer vision, but few works have paid attention to the geometric changes that occur during translation. The geometric changes are necessary to reduce the geometric gap between domains at the cost of breaking correspondence between translated images and original ground truth. We propose a novel geometry-aware semi-supervised method to preserve this correspondence while still allowing geometric changes. The proposed method takes a synthetic image-mask pair as input and produces a corresponding real pair. We also utilize an objective function to ensure consistent geometric movement of the image and mask through the translation. Extensive experiments illustrate that our method yields a 11.23% higher mean Intersection-Over-Union than the current methods on the downstream eye segmentation task. The generated image has a 15.9% decrease in Frechet Inception Distance indicating higher image quality.
more »
« less
- Award ID(s):
- 2107454
- NSF-PAR ID:
- 10389753
- Date Published:
- Journal Name:
- Proceedings of ETRA '22: 2022 Symposium on Eye Tracking Research and Applications
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sketch-to-image is an important task to reduce the burden of creating a color image from scratch. Unlike previous sketch-to-image models, where the image is synthesized in an end-to-end manner, leading to an unnaturalistic image, we propose a method by decomposing the problem into subproblems to generate a more naturalistic and reasonable image. It first generates an intermediate output which is a semantic mask map from the input sketch through instance and semantic segmentation in two levels, background segmentation and foreground segmentation. Background segmentation is formed based on the context of the foreground objects. Then, the foreground segmentations are sequentially added to the created background segmentation. Finally, the generated mask map is fed into an image-to-image translation model to generate an image. Our proposed method works with 92 distinct classes. Compared to state-of-the-art sketch-to-image models, our proposed method outperforms the previous methods and generates better images.more » « less
-
Finding correspondences between images is a fundamental problem in computer vision. In this paper, we show that correspondence emerges in image diffusion models without any explicit supervision. We propose a simple strategy to extract this implicit knowledge out of diffusion networks as image features, namely DIffusion FeaTures (DIFT), and use them to establish correspondences between real images. Without any additional fine-tuning or supervision on the task-specific data or annotations, DIFT is able to outperform both weakly-supervised methods and competitive off-the-shelf features in identifying semantic, geometric, and temporal correspondences. Particularly for semantic correspondence, DIFT from Stable Diffusion is able to outperform DINO and OpenCLIP by 19 and 14 accuracy points respectively on the challenging SPair-71k benchmark. It even outperforms the state-of-the-art supervised methods on 9 out of 18 categories while remaining on par for the overall performance. Project page: https://diffusionfeatures. github.io.more » « less
-
The success of image generative models has enabled us to build methods that can edit images based on text or other user input. However, these methods are bespoke, imprecise, require additional information, or are limited to only 2D image edits. We present GeoDiffuser, a zero-shot optimization-based method that unifies common 2D and 3D image-based object editing capabilities into a single method. Our key insight is to view image editing operations as geometric transformations. We show that these transformations can be directly incorporated into the attention layers in diffusion models to implicitly perform editing operations. Our training-free optimization method uses an objective function that seeks to preserve object style but generate plausible images, for instance with accurate lighting and shadows. It also inpaints disoccluded parts of the image where the object was originally located. Given a natural image and user input, we segment the foreground object using SAM and estimate a corresponding transform which is used by our optimization approach for editing. GeoDiffuser can perform common 2D and 3D edits like object translation, 3D rotation, and removal. We present quantitative results, including a perceptual study, that shows how our approach is better than existing methods.more » « less
-
A self-driving car must be able to reliably handle adverse weather conditions (e.g., snowy) to operate safely. In this paper, we investigate the idea of turning sensor inputs (i.e., images) captured in an adverse condition into a benign one (i.e., sunny), upon which the downstream tasks (e.g., semantic segmentation) can attain high accuracy. Prior work primarily formulates this as an unpaired image-to-image translation problem due to the lack of paired images captured under the exact same camera poses and semantic layouts. While perfectly- aligned images are not available, one can easily obtain coarsely- paired images. For instance, many people drive the same routes daily in both good and adverse weather; thus, images captured at close-by GPS locations can form a pair. Though data from repeated traversals are unlikely to capture the same foreground objects, we posit that they provide rich contextual information to supervise the image translation model. To this end, we propose a novel training objective leveraging coarsely- aligned image pairs. We show that our coarsely-aligned training scheme leads to a better image translation quality and improved downstream tasks, such as semantic segmentation, monocular depth estimation, and visual localization.more » « less